\(\dfrac{x^2+2x}{2x+12}+\dfrac{x-6}{x}+\dfrac{108-6x}{2x\left(x+6\right)}\)
a) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{3}-\left(x-1\right)\)
b) \(x^2-6x-2+\dfrac{14}{x^2-6x+7}=0\)
c) \(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
d) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}=\dfrac{6}{x^2-9}\)
e) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
Tìm các số nguyên x sao cho tích của 2 số hữu tỉ \(-\dfrac{3}{x-1};\dfrac{x-2}{2}\) là một số nguyên
Giải :
Ta có :
\(-\dfrac{3}{x-1}.\dfrac{x-2}{2}=\dfrac{-3\left(x-2\right)}{\left(x-1\right).2}=\dfrac{-3x+6}{2x-2}\)
\(\dfrac{-3x+6}{2x-2}\) là một số nguyên khi \(-3x+6⋮2x-2\)
\(\Leftrightarrow2\left(-3x+6\right)+3\left(2x-2\right)⋮2x-2\\ \Leftrightarrow-6x+12+6x-6⋮2x-2\\ \Leftrightarrow\left(-6x+6x\right)+\left(12-6\right)⋮2x-2\\ \Leftrightarrow6⋮2x-2\\ \Leftrightarrow2x-2\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\\ \Leftrightarrow2x\in\left\{3;1;4;0;5;-1;8;-4\right\}\\ \Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
??????????????????
Thick thể hiện à
haizzzz
4,\(\dfrac{x+1}{3}\)+\(\dfrac{3\left(2x+1\right)}{4}\)=\(\dfrac{2x+3\left(x+1\right)}{6}\)+\(\dfrac{7+12x}{12}\)
5,\(\dfrac{2x}{3}\)+\(\dfrac{2x-1}{6}\)=4-\(\dfrac{x}{3}\)
6,\(\dfrac{x-1}{2}\)+\(\dfrac{x-1}{4}\)=1-\(\dfrac{2\left(x-1\right)}{3}\)
4, \(\Leftrightarrow4x+4+9\left(2x+1\right)=4x+6\left(x+1\right)+7+12x\)
\(\Leftrightarrow22x+13=22x+13\)vậy pt có vô số nghiệm
5, \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\Rightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow8x=25\Leftrightarrow x=\dfrac{25}{8}\)
6, \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\Rightarrow6x-6+3x-3=12-8\left(x-1\right)\)
\(\Leftrightarrow9x-9=20-8x\Leftrightarrow17x=29\Leftrightarrow x=\dfrac{29}{17}\)
g) \(3-\dfrac{2}{2x-3}=\dfrac{2}{5}=\dfrac{2}{9-6x}-\dfrac{3}{2}\)
h) \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
i) \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
k) \(\dfrac{13}{x-1}+\dfrac{5}{2x-2}-\dfrac{6}{3x-3}\)
m) \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
n) \(\left(\dfrac{3}{2}-\dfrac{5}{11}-\dfrac{3}{13}\right)\left(2x-2\right)=\left(-\dfrac{3}{4}+\dfrac{5}{22}+\dfrac{3}{26}\right)\)
4 câu đầu hìn như sai đề :v
`m)(3/2-2/(-5)):x-1/2=3/2`
`<=>(3/2+2/5):x=3/2+1/2=2`
`<=>19/10:x=2`
`<=>x=19/10:2=19/20`
`n)(3/2-5/11-3/13)(2x-2)=(-3/4+5/22+3/26)`
`<=>(3/2-5/11-3/13)(2x-2)+3/4-5/22-3/26=0`
`<=>(3/2-5/11-3/13)(2x-2)+1/2(3/2-5/11-3/13)=0`
`<=>(3/2-5/11-3/13)(2x-2+1/2)=0`
Mà `3/2-5/11-3/13>0`
`<=>2x-2+1/2=0`
`<=>2x-3/2=0`
`<=>2x=3/2<=>x=3/4`
h, \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\left(x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2}{2}-1=\dfrac{x}{12}\)
\(\Leftrightarrow x^2-\dfrac{x}{6}-2=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{12}+\dfrac{1}{144}-\dfrac{289}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{12}\right)^2=\dfrac{289}{144}\)
\(\Leftrightarrow x=\dfrac{1}{12}\pm\dfrac{\sqrt{289}}{12}\)
Vậy ...
i, \(\Leftrightarrow x^2-\dfrac{2.x.7}{12}+\dfrac{49}{144}-\dfrac{1}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2=\dfrac{1}{144}\)
\(\Leftrightarrow x=\dfrac{7}{2}\pm\dfrac{1}{12}\)
Vậy ...
h) Ta có: \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Leftrightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Leftrightarrow12x^2-24-2x=0\)
\(\Delta=\left(-2\right)^2-4\cdot12\cdot\left(-24\right)=1156\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-34}{24}=\dfrac{-8}{3}\\x_2=\dfrac{2+34}{24}=\dfrac{36}{24}=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{8}{3};\dfrac{3}{2}\right\}\)
m) Ta có: \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{19}{10}:x=2\)
hay \(x=\dfrac{19}{20}\)
Vậy: \(S=\left\{\dfrac{19}{20}\right\}\)
tính
\(\dfrac{x^2-49}{x-7}+x-2\)
\(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right).\dfrac{x^2+6x}{2x-6}\)
a, \(\dfrac{x^2-49}{x-7}\) + x - 2 = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x - 2 = x + 7 + x - 2 = 2x + 5
b, \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right)\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\left(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\dfrac{6}{x-6}\)
1. = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x-2
= x+7 +x-2
= 2x-5
2. = (\(\dfrac{x}{\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{x-6}{x\left(x+6\right)}\) ) \(^{\dfrac{x^2+6x}{2x-6}}\)
= ( \(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\) ) \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{12x-36}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{12\left(x-3\right)x\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)2\left(x-3\right)}\)
= \(\dfrac{6}{x-6}\)
Chúc bạn học tốt!
a) (X-2)(x+3)-3(4x-2)=(x-4)\(^{^{ }2}\)
b) \(\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\)
c) \(x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
d) \(\left(2x+5\right)^2=\left(x+2\right)^2\)
e) \(x^2-5+6=0\)
g) \(2x^3+6x^2=x^2+3x\)
h) \(\left(x+\dfrac{1}{2}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\)
mọi người giúp e với ạ
\(a,\left(x-2\right)\left(x-3\right)-3\left(4x-2\right)=\left(x-4\right)^2\\ \Leftrightarrow x^2-5x+6-12x+6=x^2-8x+16\\ \Leftrightarrow-9x-4=0\\ \Leftrightarrow x=-\dfrac{4}{9}\)
\(b,\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\\ \Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\\ \Leftrightarrow10x=1\\ \Leftrightarrow x=\dfrac{1}{10}\)
\(c,x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\\ \Leftrightarrow30x-12x+12+5x+40=210+10x-10\\ \Leftrightarrow13x=148\\ \Leftrightarrow x=\dfrac{148}{13}\)
\(d,\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
\(e,x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(g,2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
\(h,\left(x+\dfrac{1}{x}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\left(x\ne0\right)\)
Đặt \(x+\dfrac{1}{x}=t\), pt trở thành:
\(t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1-2x=0\\x^2+1+4x=0\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\Delta\left(1\right)=16-4=12>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
Tick plzz
a: Ta có: \(\left(x-2\right)\left(x+3\right)-3\left(4x-2\right)=\left(x-4\right)^2\)
\(\Leftrightarrow x^2+x-6-12x+6-x^2+8x-16=0\)
\(\Leftrightarrow-3x=16\)
hay \(x=-\dfrac{16}{3}\)
b: Ta có: \(\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\)
\(\Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\)
\(\Leftrightarrow-14x+7+4x-6=0\)
\(\Leftrightarrow10x=1\)
hay \(x=\dfrac{1}{10}\)
c: Ta có: \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow23x+70=10x+200\)
\(\Leftrightarrow x=10\)
Giải các phương trình sau :
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
b,\(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
c,\(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)
d,\(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)
e,\(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
⇔ \(6x^2-5x+3=2x-9x+6x^2\)
⇔ \(6x^2-5x+3-6x^2+9x-2x=0\)
⇔ \(2x+3=0\)
⇔ \(2x=-3\)
⇔ \(x=-\dfrac{3}{2}\)
b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)
⇔ \(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)
⇔ \(12x-92-8\left(4x+1\right)=0\)
⇔ 12x - 92 - 32x - 8 = 0
⇔ -100 - 20x = 0
⇔ 20x = -100
⇔ x = -100 : 20
⇔ x = -5
c, \(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)
⇔ \(\dfrac{8x}{12}+\dfrac{9x-15}{12}=\dfrac{18x-9}{6}-\dfrac{7}{6}\)
⇔ \(\dfrac{17x-15}{12}=\dfrac{18x-16}{6}\)
⇔ \(\dfrac{17x-15}{12}-\dfrac{18x-16}{6}=0\)
⇔ \(\dfrac{17x-15}{12}-\dfrac{36x-32}{12}=0\)
⇔ 17x - 15 - 36 + 32 = 0
⇔ 17 - 19x = 0
⇔ 19x = 17
⇔ x = \(\dfrac{17}{19}\)
Giải các phương trình sau:
k) \(\dfrac{1}{x}\)+\(\dfrac{1}{x+10}=\dfrac{1}{12}\)
o) \(\dfrac{x}{2x+6}-\dfrac{x}{2x-2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
\(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\)
\(ĐK:x\ne0;-10\)
\(\Leftrightarrow\dfrac{12\left(x+10\right)+12x}{12x\left(x+10\right)}=\dfrac{x\left(x+10\right)}{12x\left(x+10\right)}\)
\(\Leftrightarrow12\left(x+10\right)+12x-x\left(x+10\right)=0\)
\(\Leftrightarrow12x+120+12x-x^2-10x=0\)
\(\Leftrightarrow-x^2+14x+120=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-6\end{matrix}\right.\)
\(o,\dfrac{x}{2x+6}-\dfrac{x}{2x-2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x+3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)-x\left(x+3\right)-2\left(3x+2\right)}{2\left(x+1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+x-x^2-3x-6x-4=0\)
\(\Leftrightarrow-8x-4=0\)
\(\Leftrightarrow-4\left(2x+1\right)=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(S=\left\{-\dfrac{1}{2}\right\}\)
Giải các phương trình sau :
a) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}=\dfrac{6}{x^2-9}\)
b) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)