\(log_{x^2}16+log_{2x}64=3\)
Bất phương trình logarit
$$1) \sqrt{log_{1/2}^{2} \frac{2x}{4-x} - 4} \leq \sqrt{5}$$
$$2)log_{2}(x-1)^{2} > 2log_{2} (x^{3} +x +1)$$
$$3)\frac{1}{log_{2}(4x)^{2} +3 } + \frac{1}{log_{4} 16x^{3}-2} <-1$$
$$4)log_{2} (4^{x}+4) < log_{\frac{1}{2}} (2^{x+1} -2)$$
Tìm TXĐ:
a) y=\(\left(1-x\right)^{\dfrac{-1}{3}}\)
b) \(y=\sqrt{\log_{0,5}\dfrac{2x+1}{x+5}-2}\)
c) \(y=\log_{10}\sqrt{x^2-x-12}\)
d) \(y=\sqrt{\log_{10}x-1+\log_{10}x+1}\)
Giải các phương trình sau:
1) \(2^x=64\)
2) \(2^x . 3^x . 5^x = 7\)
3) \(4^x + 2 . 2^x - 3 = 0\)
4) \(9^x - 4.3^x + 3 =0\)
5) \(3^{2(x+1)} + 3^{x+1} = 6\)
6) \((2 - \sqrt3)^x + (2 + \sqrt3)^x = 2\)
7) \(\log_{4} (x^2+3x) = 1\)
8) \(\log_{2} (x-2) + \log_{2} (x) = 3\)
9) \(\log^2_{3} (x-3) + \log_{3} (x-3) -6=0\)
1: \(2^x=64\)
=>\(x=log_264=6\)
2: \(2^x\cdot3^x\cdot5^x=7\)
=>\(\left(2\cdot3\cdot5\right)^x=7\)
=>\(30^x=7\)
=>\(x=log_{30}7\)
3: \(4^x+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)
=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)
=>\(2^x-1=0\)
=>\(2^x=1\)
=>x=0
4: \(9^x-4\cdot3^x+3=0\)
=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)
Đặt \(a=3^x\left(a>0\right)\)
Phương trình sẽ trở thành:
\(a^2-4a+3=0\)
=>(a-1)(a-3)=0
=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)
=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)
=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)
=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)
=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)
=>\(3^{x+1}-2=0\)
=>\(3^{x+1}=2\)
=>\(x+1=log_32\)
=>\(x=-1+log_32\)
6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)
Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)
Phương trình sẽ trở thành:
\(\dfrac{1}{b}+b=2\)
=>\(b^2+1=2b\)
=>\(b^2-2b+1=0\)
=>(b-1)2=0
=>b-1=0
=>b=1
=>\(\left(2+\sqrt{3}\right)^x=1\)
=>x=0
7: ĐKXĐ: \(x^2+3x>0\)
=>x(x+3)>0
=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)
=>\(x^2+3x=4^1=4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
Giải các phương trình sau:
a. \(log_{\frac{2}{x}}x^2-14log_{16x}x^3+40log_{4x}\sqrt{x}=0\)
b. \(log_{\frac{x}{2}}4x^2+2log_{\frac{x^3}{8}}2x+log_{2x}\frac{x^4}{4}=-\frac{14}{3}\)
a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0
\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)
\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)
\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)
Đặt \(\log_x2=a\left(a\in R\right)\)
Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)
\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)
Vậy pt đã cho vô nghiệm
cái đó phải là \(-42\log_{16x}x\) nhé bạn
\(\log_{\frac{x}{2}}4x^2+2\log_{\frac{x^3}{8}}2x+\log_{2x}\frac{x^4}{4}=-\frac{14}{3}\)(ĐKXĐ:x>0)
\(\Leftrightarrow2\log_{\frac{x}{2}}2x+\frac{2}{3}\log_{\frac{x}{2}}2x+2\log_{2x}\frac{x^2}{2}=-\frac{14}{3}\)
\(\Leftrightarrow\frac{8}{3}\log_{\frac{x}{2}}2x+2\log_{2x}\frac{x^2}{2}=-\frac{14}{3}\)
Xét \(\log_{2x}\frac{x^2}{2}=\log_{2x}\frac{x^2}{4}\cdot2=2\log_{2x}\frac{x}{2}+\log_{2x}2=\frac{2}{\log_{\frac{x}{2}}2x}+\frac{1}{1+\log_2x}\)
Thay vào phương trình ta được:
\(\frac{8}{3}\log_{\frac{x}{2}}2x+2\left(\frac{2}{\log_{\frac{x}{2}}2x}+\frac{1}{1+\log_2x}\right)=-\frac{14}{3}\)
Đặt \(\log_2x=a\left(a\in R\right)\)
Xét
\(\log_{\frac{x}{2}}2x=\log_{\frac{x}{2}}2+\log_{\frac{x}{2}}x=\frac{1}{\log_2\frac{x}{2}}+\frac{1}{\log_x\frac{x}{2}}=\frac{1}{\log_2x-1}+\frac{1}{1-\log_x2}=\frac{1}{a-1}+\frac{1}{1-\frac{1}{a}}=\frac{a+1}{a-1}\)
Thay vào pt ta được:
\(\frac{8}{3}\cdot\frac{a+1}{a-1}+2\left(2\cdot\frac{a-1}{a+1}+\frac{1}{a+1}\right)=-\frac{14}{3}\)
Giải ra ta được a=0 hoặc a=-23/17
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2^{-\frac{23}{17}}\end{matrix}\right.\)
giải pt
1. \(\log_{2}(x)+\log_{3}(x)=\log_{2}(x).\log_{3}(x)\)
Lời giải:
ĐKXĐ: \(x>0\)
Sử dụng công thức sau: \(\log_ax=\frac{\ln x}{\ln a}\) vào bài toán ta có:
\(\log_2x+\log_3x=\log_2x\log_3x\)
\(\Leftrightarrow \frac{\ln x}{\ln 2}+\frac{\ln x}{\ln 3}=\frac{\ln x}{\ln 2}.\frac{\ln x}{\ln 3}\)
\(\Leftrightarrow \ln x\left(\frac{1}{\ln 2}+\frac{1}{\ln 3}-\frac{\ln x}{\ln 2.\ln 3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\ln x=0\left(1\right)\\\dfrac{1}{\ln2}+\dfrac{1}{\ln3}=\dfrac{\ln x}{\ln2.\ln3}\end{matrix}\right.\left(2\right)\)
\((1)\Leftrightarrow x=1\) (thỏa mãn)
\((2)\Leftrightarrow \frac{\ln 2+\ln 3}{\ln 2.\ln 3}=\frac{\ln x}{\ln 2.\ln 3}\)
\(\Leftrightarrow \ln x=\ln 2+\ln 3=\ln 6\Rightarrow x=6\)
Vậy \(x\in\left\{1;6\right\}\)
Xác định m để hệ phương trình có hai cặp nghiệm phân biệt
\(\begin{cases}\log_{\sqrt{3}}\left(x+1\right)-\log_{\sqrt{3}}\left(x-1\right)>\log_34\left(1\right)\\\log_2\left(x^2-2x+5\right)-m\log_{x^2-2x+5}2=5\left(2\right)\end{cases}\)
Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
\(\log_{x^2}16-\log_{\sqrt{x}}7=2\)
a)\(log_3\left(2x+1\right)=2log_{2x+1}3+1\)
b) \(1+log_{27}\left(x^{log_{27}x}\right)=\frac{10}{3}log_{27}x\)
giúp em với ạ,em cảm ơn
a)ĐK: 2x+1>0
\(\log_3\left(2x+1\right)=2\log_{2x+1}3+1\)
\(\Leftrightarrow log_3\left(2x+1\right)=2.\frac{1}{log_3\left(2x+1\right)}+1\)
Nhân \(log_3\left(2x+1\right)\)cả 2 vế
Đặt \(t=log_3\left(2x+1\right)\)
\(\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=9\\2x+1=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-\frac{1}{3}\end{array}\right.\)nhận cả 2 nghiệm
b)ĐK x>0
\(\Leftrightarrow1+log^2_{27}x=\frac{10}{3}log_{27}x\)
Đặt \(t=log_{27}x\)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\left[\begin{array}{nghiempt}x=27^3\\x=3\end{array}\right.\)
Tập nghiệm của bất pt \(\log_{\dfrac{1}{2}}\left(x+1\right)-log_{\dfrac{1}{2}}\left(2x-1\right)< 2\)
ĐKXĐ: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)
\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)
\(\Rightarrow x>-\dfrac{5}{2}\)
Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)