Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NL
23 tháng 12 2022 lúc 23:43

19

Từ pt đầu ta có:

\(x^2-xy-2xy+2y^2=0\)

\(\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)

TH1: \(x=y\) thế xuống pt dưới:

\(y^2-y-y^2=1\Rightarrow y=-1\Rightarrow x=-1\)

TH2: \(x=2y\) thế xuống pt dưới:

\(\left(2y\right)^2-2y-y^2=1\Leftrightarrow3y^2-2y-1=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-\dfrac{1}{3}\Rightarrow x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(-1;-1\right);\left(1;2\right);\left(-\dfrac{1}{3};-\dfrac{2}{3}\right)\)

Bình luận (0)
NL
23 tháng 12 2022 lúc 23:50

21.

Từ pt đầu:

\(xy+2=2x+y\Leftrightarrow xy-y+2-2x=0\)

\(\Leftrightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

TH1: \(x=1\) thế xuống pt dưới:

\(2y+y^2+3y=6\Leftrightarrow y^2+5y-6=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-6\end{matrix}\right.\)

TH2: \(y=2\) thế xuông pt dưới

\(4x+4+6=6\Rightarrow x=-1\)

Vậy nghiệm của pt là: \(\left(x;y\right)=\left(1;1\right);\left(1;-6\right);\left(-1;2\right)\)

Bình luận (0)
NL
23 tháng 12 2022 lúc 23:53

22.

\(\Leftrightarrow\left\{{}\begin{matrix}9x^2-6xy+y^2+6xy=10\\\left(3x-y\right)\left(10-6xy\right)=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-y\right)^2=10-6xy\\\left(3x-y\right)\left(10-6xy\right)=8\end{matrix}\right.\)

Thế \(10-6xy\) từ pt trên xuống dưới ta được 

\(\left(3x-y\right)\left(3x-y\right)^2=8\)

\(\Leftrightarrow\left(3x-y\right)^3=2^3\)

\(\Leftrightarrow3x-y=2\)

\(\Leftrightarrow y=3x-2\)

Thế vào pt đầu:

\(9x^2+\left(3x-2\right)^2=10\)

\(\Leftrightarrow18x^2-12x-6=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-\dfrac{1}{3}\Rightarrow y=-3\end{matrix}\right.\)

Bình luận (1)
PM
Xem chi tiết
DD
Xem chi tiết
MH
17 tháng 9 2021 lúc 20:48

b)\(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

\(=\left(3x-6xy\right)\left(x+3y\right)\)

c)\(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

Bình luận (0)
HP
17 tháng 9 2021 lúc 20:53

Bài 1: 

b. \(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

= (3x - 6xy)(x + 3y)

= 3x(1 - 2y)(x + 3y)

c. \(x\left(x+y\right)-5x-5y\)

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

d. \(3\left(x-y\right)-5x\left(y-x\right)\)

= 3(x - y) + 5x(x - y)

= (3 + 5x)(x - y)

Bài 3:

a. x + 6x2 = 0

<=> x(1 + 6x) = 0

<=> \(\left[{}\begin{matrix}x=0\\1+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{6}\end{matrix}\right.\)

b. 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c. 5x(x - 2) - (2 - x) = 0

<=> 5x(x - 2) + (x - 2) = 0

<=> (5x + 1)(x - 2) = 0

<=> \(\left[{}\begin{matrix}5x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{5}\\x=2\end{matrix}\right.\)

d. (x + 1) = (x + 1)2

<=> (x + 1) - (x + 1)2 = 0

<=> (1 - x - 1)(x + 1) = 0

<=> -x(x + 1) = 0

<=> \(\left[{}\begin{matrix}-x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

 

Bình luận (0)
MX
Xem chi tiết
JP
Xem chi tiết
NT
29 tháng 7 2023 lúc 14:48

Gọi xy là tiếp tuyến tại A của (O)

=>góc xAC=góc ABC

xy//DE

=>góc xAE=góc AED

=>góc AED=góc ABC

Xét ΔAED và ΔABC có

góc AED=góc ABC

góc EAD chung

=>ΔAED đồng dạng với ΔABC

=>AE/AB=AD/AC

=>AE*AC=AB*AD

Bình luận (0)
TA
Xem chi tiết
DH
26 tháng 5 2021 lúc 11:55

1 C

2 A

3 C

4 B

5 D

Bình luận (0)
QH
Xem chi tiết
NT
Xem chi tiết