Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

DD

Ai có lòng tốt làm ơn giúp em 3 bài này vs ạ.Em cảm ơn rất rất rất nhiều ạ😋undefined

MH
17 tháng 9 2021 lúc 20:48

b)\(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

\(=\left(3x-6xy\right)\left(x+3y\right)\)

c)\(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

Bình luận (0)
HP
17 tháng 9 2021 lúc 20:53

Bài 1: 

b. \(3x\left(x+3y\right)-6xy\left(x+3y\right)\)

= (3x - 6xy)(x + 3y)

= 3x(1 - 2y)(x + 3y)

c. \(x\left(x+y\right)-5x-5y\)

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

d. \(3\left(x-y\right)-5x\left(y-x\right)\)

= 3(x - y) + 5x(x - y)

= (3 + 5x)(x - y)

Bài 3:

a. x + 6x2 = 0

<=> x(1 + 6x) = 0

<=> \(\left[{}\begin{matrix}x=0\\1+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{6}\end{matrix}\right.\)

b. 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c. 5x(x - 2) - (2 - x) = 0

<=> 5x(x - 2) + (x - 2) = 0

<=> (5x + 1)(x - 2) = 0

<=> \(\left[{}\begin{matrix}5x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{5}\\x=2\end{matrix}\right.\)

d. (x + 1) = (x + 1)2

<=> (x + 1) - (x + 1)2 = 0

<=> (1 - x - 1)(x + 1) = 0

<=> -x(x + 1) = 0

<=> \(\left[{}\begin{matrix}-x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

 

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
KG
Xem chi tiết
DL
Xem chi tiết