Những câu hỏi liên quan
PT
Xem chi tiết
BT
19 tháng 2 2021 lúc 17:58

Vì a=1>0 nên để f(x) luôn dương <=> \(\Delta< 0\)

<=>[-(m+2)]2-4(8m+1)<0

<=>m2+4m+4-32m-4<0

<=>m2-28m<0 <=> 0<m<28

Vậy f(x) luôn dương khi m thuộc (0;28)

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 3 2022 lúc 21:18

Trường hợp 1: m=3

=>f(x)=-2(3-2)x+3=-2x+3 không thể luôn luôn dương

=>Loại

Trường hợp 2: m<>3

\(\text{Δ}=\left(2m-4\right)^2-4m\left(m-3\right)\)

\(=4m^2-16m+16-4m^2+12m=-4m+16\)

Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}-4m+16< 0\\m-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4m< -16\\m>3\end{matrix}\right.\Leftrightarrow m>4\)

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 3 2021 lúc 23:13

Bình luận (0)
NT
Xem chi tiết
H24
10 tháng 3 2023 lúc 21:18

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
NT
2 tháng 12 2023 lúc 22:40

\(\text{Δ}=\left(m+1\right)^2-4\cdot2=\left(m+1\right)^2-8\)

Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1>0\\\left(m+1\right)^2-8< 0\end{matrix}\right.\)

=>\(\left(m+1\right)^2-8< 0\)

=>\(\left(m+1\right)^2< 8\)

=>\(-2\sqrt{2}< m+1< 2\sqrt{2}\)

=>\(-2\sqrt{2}-1< m< 2\sqrt{2}-1\)

Bình luận (0)
ND
Xem chi tiết
NN
Xem chi tiết