1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
F(x)= ax+b ;a khác 0
biết F(1)= 0 ; F(2)= 4
G(x)= ax^2+bx+c ;a khác 0
biết G(1) = 0; G(-1)= 9 ; G(2)= 5
cho đa thức f(x)= ax^2+bx+ca khác 0
biết f(1)= f(-1)
CM :f(x)= f(-x)
no hiểu gì hết THIS IS HOW I DO NOT KNOW HOW TO APOLOGIZE OFFLINE
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
cho đa thức f(x)=ax^2+bx+c (a khác 0). CMR: f(x) = f(-x - b/a)
cho m=f(x)=ax^2+bx+c.xac dinh a,b,c biet f(2)=0,f(-2)=0va a-c=3
Có : 0 = f(2) = 4a+2b+c
0 = f(-2) = 4a-2b+c
=> 0 = 4a+2b+c-(4a-2b+c) = 4b
=> b = 0
=> 4a+c = 0
Mà a-c = 3 => c = a-3
=> 0 = 4a+a-3
=> 5a-3=0
=> a=3/5
=> c=-12/5
Vậy ............
Tk mk nha
cho hai đa thức f(x)= ax^2+bx+c và g(x)=cx^2+bx+a . cmr nếu f(x0)=0 thì g(1/x0)=0
cho hàm số y=f(x)=ax^2+bx+c.Tim a,b,c biết f(-2)=0;f(2)=0 và a-c=3
Ta có: \(y=f\left(x\right)=ax^{2\:}+bx+c\)
\(\Rightarrow f\left(-2\right)=4a-2b+c=2a-2b+2a+c=2a-2b+3c+6=0\)
\(\Rightarrow2a-2b+3c=-6\left(1\right)\)
\(f\left(2\right)=4a+2b+c=2a+2b+2a+c=2a+2b+3c+6=0\)
\(\Rightarrow2a+2b+3c=-6\left(2\right)\)
Từ (1)(2) \(\Rightarrow2a-2b+3c=2a+2b+3c\)
\(\Rightarrow2a-2b+3c-\left(2a+2b+3c\right)=0\)
\(\Rightarrow2a-2b+3c-2a-2b-3c=0\)
\(\Rightarrow\left(2a-2a\right)-\left(2b+2b\right)+\left(3c-3c\right)=0\)
\(\Rightarrow-4b=0\)
\(\Rightarrow b=0\)
\(\Rightarrow2a+3c=-6\)
\(\Rightarrow5c+6=-6\)
\(\Rightarrow5c=-12\)
\(\Rightarrow c=\frac{-12}{5}\)
\(\Rightarrow a=\frac{-12}{5}+3=\frac{3}{5}\)
Vậy \(a=\frac{3}{5};c=\frac{-12}{5};b=0\)
Cho đa thức: f(x)=ax\(^2\)+bx+c. Tìm a,b,c biết f(0)=4; f(1)=3, f(-1)=7
Vì f(0)=4 => c=4
=> f(x)=ax^2+bx+4
Vì f(1)=3 => a+b+4=3 => a+b=-1(1)
f(-1)=7 => a-b+4=7 => a-b =3 (2)
Từ (1),(2) => a = 1; b=-2
=> f(x)=x^2-2x+4
Cho f (x)= ax^2 +bx +c
Tính f(-1) biết a+c= b+2019
a+c=b+2019
<=> a+c-b=2019
ta có f(-1)=a1^2+b*(-1)+c=a+c-b=2019
vậy f(-1)=2019
Cho f(x)=ax^2+bx+c . Biết f(2)=f(-3)=156;f(-1)=132 a) tìm a,b,c. b) cm f(x) khác 0 với mọi x
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+2b+c=156\\9a-3b+c=156\\a-b+c=132\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=4\\c=132\end{matrix}\right.\)
b: \(f\left(x\right)=4x^2+4x+132=\left(2x+1\right)^2+131>0\forall x\)