Những câu hỏi liên quan
LL
Xem chi tiết
NT
25 tháng 11 2022 lúc 23:45

a: \(=\dfrac{1}{x+2y}+\dfrac{1}{x-2y}-\dfrac{4y}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{x-2y+x+2y-4y}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2}{x+2y}\)

b: \(=\dfrac{2x}{x-1}+\dfrac{5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}\cdot\dfrac{2\left(x+1\right)}{5\left(1-x\right)}\)

\(=\dfrac{2x}{x-1}-2=\dfrac{2x-2x+2}{x-1}=\dfrac{2}{x-1}\)

c: \(=\dfrac{5\left(x-1\right)}{2x}\cdot\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{5\cdot4x}{2x\cdot\left(x+1\right)}=\dfrac{10}{x+1}\)

 

Bình luận (0)
CT
Xem chi tiết
NT
1 tháng 7 2023 lúc 13:32

a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2

b: =x^3+3x^2-2x-3x^2-9x+6

=x^3-11x+6

c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)

\(=2x^2-3x-1+\dfrac{5}{2x+1}\)

Bình luận (0)
H9
1 tháng 7 2023 lúc 13:50

a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)

\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)

\(=2x^5-16x^3-2x^5-x^3\)

\(=-17x^3\)

b) \(\left(x+3\right)\left(x^2+3x-2\right)\)

\(=x^3+3x^2-2x+3x^2+9x-6\)

\(=x^3+6x^2+7x-6\)

c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)

\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)

\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)

Bình luận (0)
DL
Xem chi tiết
NT
11 tháng 4 2023 lúc 8:45

1: ĐKXĐ: x>1/2

=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)

x^2-2x+1>=0

=>x^2>=2x-1

=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)

Dấu = xảy ra khi x=1

(x^2-2x+1)(x^2+2x+3)>=0

=>x^4-4x+3>=0

=>x^4>=4x-3

=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)

=>VT>=2

Dấu = xảy ra khi x=1

2: 4x-1=x+x+2x-1

5x-2=x+2x-1+2x-1

\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)

\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)

=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)

=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)

Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)

Dấu = xảy ra khi x=1

Bình luận (1)
MT
Xem chi tiết
H24
Xem chi tiết
NM
6 tháng 12 2021 lúc 16:35

\(a,=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\\ b,=\dfrac{6x-3+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2}{2x\left(2x-1\right)}\\ =\dfrac{2\left(2x-1\right)\left(2x+1\right)}{2x\left(2x-1\right)}=\dfrac{2x+1}{x}\\ c,=\dfrac{x^3+x^2+x+2x-2+4x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+5x^2+3x-3}{x^3-1}\)

Bình luận (0)
H24
Xem chi tiết
H24
25 tháng 2 2021 lúc 17:17

`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`

`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`

`=(y(y-2x))/3`

`b,(x^2-y^2)/(x^2-y^2+xz-yz)`

`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`

`=(x+y)/(x+y+z)`

`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`

`=(-(x^2-3x+x-3))/((x-1)(x+1))`

`=(-x(x-3)+x-3)/((x-1)(x+1))`

`=((x-3)(1-x))/((x-1)(x+1))`

`=(3-x)/(1+x)`

`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`

`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`

`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`

`=(3x^2-4x+1)/(2x^2+x-3)`

`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`

`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`

`=(3x-1)/(2x+3)`

Bình luận (0)
NT
25 tháng 2 2021 lúc 22:46

a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)

\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)

\(=\dfrac{y\left(y-2x\right)}{3}\)

 

Bình luận (0)
DD
Xem chi tiết
HH
7 tháng 2 2021 lúc 17:53

1/ \(=\lim\limits_{x\rightarrow0}\dfrac{3\left(1+3x\right)^2.3+4.4\left(1-4x\right)^3}{1}=...\left(thay-x-vo\right)\)

2/ \(=\lim\limits_{x\rightarrow2}\dfrac{2.2.x-5}{3x^2-3}=\dfrac{4.2-5}{3.4-3}=\dfrac{1}{3}\)

3/ \(=\lim\limits_{x\rightarrow1}\dfrac{4x^3-3}{3x^2+2}=\dfrac{4.1-3}{3.1-2}=1\)

Xai L'Hospital nhe :v

Bình luận (1)
HH
Xem chi tiết
NT
28 tháng 7 2021 lúc 22:23

a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)

\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)

\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)

 

Bình luận (0)
NT
28 tháng 7 2021 lúc 22:31

c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)

\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)

 

Bình luận (0)
NA
Xem chi tiết
HH
6 tháng 3 2021 lúc 18:45

a/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\left(2x\right)^2.\left(4x\right)^3}{x^4}}{\dfrac{\left(3x\right)^2\left(5x^2\right)}{x^4}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{4^4.x}{45}=\pm\infty\)

b/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{2x^2}{x^3}+\dfrac{x}{x^3}}}{\dfrac{2x}{x}-\dfrac{2}{x}}=\dfrac{1}{2}\)

c/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\sqrt[3]{\left(x^3+2x^2\right)^2}}{x^2}+\dfrac{x\sqrt[3]{x^3+2x^2}}{x^2}+\dfrac{x^2}{x^2}}{\dfrac{3x^2}{x^2}-\dfrac{2x}{x^2}}=\dfrac{1+1+1}{3}=1\)

d/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(-3x\right)^3x^2}{x^5}}{-\dfrac{4x^5}{x^5}}=\dfrac{-27}{-4}=\dfrac{27}{4}\)

e/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(2x\right)^{20}.\left(3x\right)^{20}}{x^{50}}}{\dfrac{\left(2x\right)^{50}}{x^{50}}}=0\)

g/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{8x^3.\left(4x^5\right)^9}{x^{47}}}{\dfrac{11x^{47}}{x^{47}}}=+\infty\)

Bình luận (0)