Bài 2: Giới hạn của hàm số

NA

Tính các giới hạn sau:

Câu 1:

a, limx→\(\pm\)∞ \(\dfrac{\left(2x-3\right)^2\left(4x+7\right)^3}{\left(3x-4\right)^2\left(5x^2-1\right)}\)

b, limx→\(\pm\)∞ \(\dfrac{\sqrt[3]{x^3+2x^2+x}}{2x-2}\)

c, limx→\(\pm\)∞ \(\dfrac{\sqrt[3]{\left(x^3+2x^2\right)^2}+x^3\sqrt{x^3+2x^2}+x^2}{3x^2-2x}\)

d, limx→+∞ \(\dfrac{\left(2-3x\right)^3\left(x+1\right)^2}{1-4x^5}\)

e, limx→+∞ \(\dfrac{\left(2x-3\right)^{20}\left(3x+2\right)^{20}}{\left(2x+1\right)^{50}}\)

g, limx→+∞ \(\dfrac{\left(2x-3\right)^3\left(4x^5+7\right)^9}{11x^{47}-8}\)

HH
6 tháng 3 2021 lúc 18:45

a/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\left(2x\right)^2.\left(4x\right)^3}{x^4}}{\dfrac{\left(3x\right)^2\left(5x^2\right)}{x^4}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{4^4.x}{45}=\pm\infty\)

b/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{2x^2}{x^3}+\dfrac{x}{x^3}}}{\dfrac{2x}{x}-\dfrac{2}{x}}=\dfrac{1}{2}\)

c/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{\dfrac{\sqrt[3]{\left(x^3+2x^2\right)^2}}{x^2}+\dfrac{x\sqrt[3]{x^3+2x^2}}{x^2}+\dfrac{x^2}{x^2}}{\dfrac{3x^2}{x^2}-\dfrac{2x}{x^2}}=\dfrac{1+1+1}{3}=1\)

d/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(-3x\right)^3x^2}{x^5}}{-\dfrac{4x^5}{x^5}}=\dfrac{-27}{-4}=\dfrac{27}{4}\)

e/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{\left(2x\right)^{20}.\left(3x\right)^{20}}{x^{50}}}{\dfrac{\left(2x\right)^{50}}{x^{50}}}=0\)

g/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{8x^3.\left(4x^5\right)^9}{x^{47}}}{\dfrac{11x^{47}}{x^{47}}}=+\infty\)

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
JP
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết