Những câu hỏi liên quan
H24
Xem chi tiết
HH
Xem chi tiết
ND
Xem chi tiết
NT
9 tháng 5 2023 lúc 20:51

a: \(N=\dfrac{x+\sqrt{x}+1+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}+2}{x\sqrt{x}-1}\)

b: \(P=M\cdot N\)

\(=\dfrac{3\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)

Cái này mình chỉ rút gọn được P thôi, còn P nguyên thì mình xin lỗi bạn rất nhiều nha

Bình luận (0)
ND
9 tháng 5 2023 lúc 20:59

uk

Bình luận (0)
HB
Xem chi tiết
NT
25 tháng 8 2021 lúc 13:15

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

Bình luận (0)
HB
Xem chi tiết
NT
25 tháng 8 2021 lúc 12:52

Đề sai rồi bạn

Bình luận (0)
NS
Xem chi tiết
NT
21 tháng 10 2021 lúc 22:09

b: Để (d)//(d') thì m+3=4

hay m=1

Bình luận (0)
TP
Xem chi tiết
BM
Xem chi tiết
NL
13 tháng 12 2020 lúc 17:44

Chắc đề là \(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2\) mới đúng

\(\Delta'=\left(m-1\right)^2-\left(2m-6\right)=\left(m-2\right)^2+3>0\)

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-6\end{matrix}\right.\) với \(m\ne3\)

\(A=\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2-2\)

\(A=\left[\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2=\left(\dfrac{4\left(m-1\right)^2}{2m-6}-2\right)^2-2\)

\(A=\left(2m-\dfrac{8}{m-3}\right)^2-2\)

\(A\) nguyên \(\Leftrightarrow\dfrac{8}{m-3}\) nguyên \(\Leftrightarrow m-3=Ư\left(8\right)\)

\(\Leftrightarrow m=...\)

Bình luận (0)
PT
Xem chi tiết