Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 10 2017 lúc 2:00

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 12 2018 lúc 17:07

Đáp án A

Để hàm số đồng biến trên khoảng 2 ; + ∞ thì

Xét f x = 3 x 2 − 6 x + 5 12 x − 1 có đạo hàm  f ' x = 3 x 2 − 6 x + 1 12 x − 1 2 > 0 x > 2

Do đó f(x) đồng biến trên khoảng 2 ; + ∞  hay  M i n f x = f 2 = 5 12 ⇒ m < 5 12

Lại có m ∈ − 2017 ; 2017 m ∈ ℤ .

Suy ra có 2018 giá trị của m thỏa mãn

Bình luận (0)
MN
Xem chi tiết
NL
14 tháng 1 2021 lúc 23:11

Đơn giản là hãy đặt \(\sqrt{6-x}=t\ge0\)

Do x và t nghịch biến nhau nên \(y=f\left(x\right)\) đồng biến trên \(\left(-8;5\right)\) đồng nghĩa \(y=f\left(t\right)\) nghịch biến trên \(\left(1;\sqrt{14}\right)\) (tại sao lại cho con số này nhỉ, (-10;5) chẳng hạn có tốt ko?)

\(\Leftrightarrow\left\{{}\begin{matrix}f'\left(t\right)\le0\\t+m=0\text{ vô nghiệm trên (0;\sqrt{14})}\end{matrix}\right.\)  

\(\Leftrightarrow...\)

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 4 2018 lúc 14:34

Vậy có 8 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Đáp án D

Bình luận (0)
MN
Xem chi tiết
NL
18 tháng 1 2021 lúc 14:54

- Với \(m=0\) thỏa mãn

- Với \(-2\left(4m-1\right)\ge0\Rightarrow m\le\dfrac{1}{4}\) hàm đồng biến trên \(\left(0;+\infty\right)\) thỏa mãn

- Xét với \(m>\dfrac{1}{4}\)

\(y'=4m^2x^3-4x\left(4m-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\sqrt{4m-1}}{m}\\x=-\dfrac{\sqrt{4m-1}}{m}\end{matrix}\right.\)

Do \(a=m^2>0\) nên hàm đồng biến trên các khoảng \(\left(-\dfrac{\sqrt{4m-1}}{m};0\right)\) và \(\left(\dfrac{\sqrt{4m-1}}{m};+\infty\right)\)

\(\Rightarrow\) Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(\dfrac{\sqrt{4m-1}}{m}\ge1\Rightarrow4m-1\ge m^2\)

\(\Leftrightarrow m^2-4m+1\le0\Rightarrow2-\sqrt{3}\le m\le2+\sqrt{3}\)

Vậy \(\left[{}\begin{matrix}m\le\dfrac{1}{4}\\2-\sqrt{3}\le m\le2+\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
MN
18 tháng 1 2021 lúc 22:39

undefined

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 5 2019 lúc 8:43

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 7 2018 lúc 6:06

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 7 2017 lúc 12:42

Tập xác định D=R\{m}.

Ta có 

Hàm số đồng biến trên 1 ; + ∞   khi và chỉ khi g x ≥ 0   v à   m ≤ 1   (1)

Vì ∆ ' g = 2 ( m + 1 ) 2 ≥ 0 ,   ∀ m   nên (1) tương đương g(x)=0 có hai nghiệm thỏa x 1 ≤ x 2 ≤ 1   

Điều kiện tương đương là 

Do đó không có giá trị nguyên dương của m thỏa yêu cầu bài toán.

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 4 2019 lúc 3:38

Bình luận (0)