Bài 5: Khảo sát sự biến thiên và vẽ đồ thị hàm số

MN

Cho hàm số y = \(\dfrac{\left(4-m\right)\sqrt{6-x}+3}{\sqrt{6-x}+m}\) . Có bao nhiêu giá trị nguyên của m trong khoảng (-10; 10) sao cho hàm số đồng biến trên (-8; 5)

NL
14 tháng 1 2021 lúc 23:11

Đơn giản là hãy đặt \(\sqrt{6-x}=t\ge0\)

Do x và t nghịch biến nhau nên \(y=f\left(x\right)\) đồng biến trên \(\left(-8;5\right)\) đồng nghĩa \(y=f\left(t\right)\) nghịch biến trên \(\left(1;\sqrt{14}\right)\) (tại sao lại cho con số này nhỉ, (-10;5) chẳng hạn có tốt ko?)

\(\Leftrightarrow\left\{{}\begin{matrix}f'\left(t\right)\le0\\t+m=0\text{ vô nghiệm trên (0;\sqrt{14})}\end{matrix}\right.\)  

\(\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
NB
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết