Những câu hỏi liên quan
TQ
Xem chi tiết
HH
Xem chi tiết
TA
15 tháng 3 2018 lúc 21:32

\(x^4-2x^2-3m+5=0\left(1\right)\)

a) Thay \(m=7\) vào pt (1), ta được:

\(x^4-2x^2-3.7+5=0\)

\(\Leftrightarrow\) \(x^4-2x^2-21+5=0\)

\(\Leftrightarrow\) \(x^4-2x^2-16=0\)

Đặt \(x^2=t\) , ĐK: \(t\ge0\) , ta được:

\(t^2-2t-16=0\)

(\(a=1\) ; \(b=-2\) ; \(c=-16\) )

Ta có: \(\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-16\right)=68>0\)

\(\Rightarrow\) \(\sqrt{\Delta}=\sqrt{68}=2\sqrt{17}\)

\(\Rightarrow\) \(t_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+2\sqrt{17}}{2.1}=1+\sqrt{17}\) (TMĐK)

\(\Rightarrow\) \(t_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-2\sqrt{17}}{2.1}=1-\sqrt{17}\) (loại vì \(1-\sqrt{17}< 0\), với mọi t )

Với \(t=t_1=1+\sqrt{17}\) , ta có: \(x^2=1+\sqrt{17}\) \(\Rightarrow\) \(x=\pm\sqrt{1+\sqrt{17}}\) \(\Rightarrow\) \(x_1=\sqrt{1+\sqrt{17}}\) , \(x_2=-\sqrt{1+\sqrt{17}}\)

b) Cho VP pt (1) \(=0\) , tìm được m

c) Như câu a) (chỉ cần đổi dấu của nghiệm \(t_2\) thôi)

NOTE: Tức là từ phần giải ra nghiệm \(t_2\) rồi giải tiếp

---- END----

Bình luận (5)
PM
Xem chi tiết
MH
Xem chi tiết
TH
15 tháng 4 2023 lúc 16:23

+) Bài bất đẳng thức:

\(\dfrac{2017a-a^2}{bc}=\dfrac{\left(a+b+c\right)a-a^2}{bc}=\dfrac{ab+ca}{bc}=\dfrac{a}{c}+\dfrac{a}{b}\left(1\right)\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{2017b-b^2}{ca}=\dfrac{b}{a}+\dfrac{b}{c}\left(2\right)\\\dfrac{2017c-c^2}{ab}=\dfrac{c}{a}+\dfrac{c}{b}\left(3\right)\end{matrix}\right.\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{bc}+\dfrac{2017c-c^2}{ab}=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\sqrt{2}\left(\sum\sqrt{\dfrac{2017-a}{a}}\right)=\sqrt{2}\left(\sum\sqrt{\dfrac{\left(a+b+c\right)-a}{a}}\right)=\sqrt{2}\left(\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}+\sqrt{\dfrac{a+b}{2}}\right)\)

Bất đẳng thức cần chứng minh tương đương với:

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge\sqrt{2}\left(\sqrt{\dfrac{a+b}{c}}+\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}\right)\)

*Có: \(\sqrt{2.\dfrac{a+b}{c}}+\sqrt{2.\dfrac{b+c}{a}}+\sqrt{2.\dfrac{c+a}{b}}\le\dfrac{2+\dfrac{a+b}{c}}{2}+\dfrac{2+\dfrac{b+c}{a}}{2}+\dfrac{2+\dfrac{c+a}{b}}{2}=3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)

Ta chỉ cần chứng minh:

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)

hay \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\) (cái này chị tự chứng minh nhé)

 

Bình luận (1)
ND
16 tháng 4 2023 lúc 20:15

Anh Trần Tuấn Hoàng giỏi BĐT quá nhỉ

Bình luận (0)
XH
Xem chi tiết
DB
27 tháng 12 2018 lúc 21:07

a) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (ĐKXĐ: \(x\ne-1;y\ne-4\))

Đặt \(\dfrac{x}{x+1}=a;\dfrac{1}{y+4}=b\left(a\ne0;b\ne0\right)\)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}3a-2b=4\left(1\right)\\2a-5b=9\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow2a=9+5b\Leftrightarrow a=\dfrac{9+5b}{2}\)

Thay \(a=\dfrac{9+5b}{2}\) vào \(\left(1\right)\), ta có:

\(\dfrac{3\left(9+5b\right)}{2}-2b=4\)

\(\Leftrightarrow27+15b-4b=8\)

\(\Leftrightarrow11b=-19\Leftrightarrow b=\dfrac{-19}{11}\)

Thay \(b=\dfrac{-19}{11}\) vào \(\left(2\right)\), ta có:

\(2a-5\cdot\dfrac{-19}{11}=9\)

\(\Leftrightarrow a=\dfrac{2}{11}\)

Với \(a=\dfrac{2}{11}\Rightarrow\dfrac{x}{x+1}=\dfrac{2}{11}\)

\(\Leftrightarrow11x=2x+2\Leftrightarrow x=\dfrac{2}{9}\)

Với \(b=\dfrac{-19}{11}\Rightarrow\dfrac{1}{y+4}=\dfrac{-19}{11}\)

\(\Leftrightarrow-19y-76=11\)

\(\Leftrightarrow y=\dfrac{-90}{19}\)

Bình luận (1)
NT
27 tháng 12 2018 lúc 21:27

b,Ta có:

\(PT\Leftrightarrow7+3.\sqrt[3]{2+x}.\sqrt[3]{5-x}\left(\sqrt[3]{2+x}+\sqrt[3]{5-x}\right)=1\)

Thay \(\sqrt[3]{2+x}+\sqrt[3]{5-x}=1\) vào PT

\(\Rightarrow\) \(3.\sqrt[3]{2+x}.\sqrt[3]{5-x}=-6\)

\(\Leftrightarrow\sqrt[3]{2+x}.\sqrt[3]{5-x}=-2\)

\(\Leftrightarrow\left(2+x\right)\left(5-x\right)=-8\)

\(\Leftrightarrow x^2-3x-18=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

Thử lại thấy x= - 3, x=6 thỏa mãn

Vậy x= -3, x = 6

Bình luận (0)
UV
27 tháng 12 2018 lúc 21:47

b, Đặt \(\sqrt[3]{2+x}=a;\sqrt[3]{5-x}=b\)
Theo đề bài: a+b=1\(\Leftrightarrow a=1-b\)
Ta có \(a^3+b^3=2+x+5-x=7\)(1)
Thay a=1-b vào pt(1) ta được:
\(a^3+b^3=\left(1-b\right)^3+b^3=7\)
\(\Leftrightarrow1-3b+3b^2-b^3+b^3=7\)
\(\Leftrightarrow3b^2-3b-6=0\Leftrightarrow b^2-b-2=0\)
\(\Leftrightarrow\left(b+1\right)\left(b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=-1\\b=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{5-x}=-1\\\sqrt[3]{5-x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5-x=-1\\5-x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-3\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình x=\(\left\{-3;6\right\}\)

Bình luận (0)
NT
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
H24
22 tháng 6 2022 lúc 18:13

bài này làm thế nào vậy

Bình luận (0)
PT
Xem chi tiết