giải mk hệ pt với ạ
3=(a+b)(a+c)
4=(a+b)(b+c)
5=(a+c)(b+c)
giải giúp mình hệ phương trình 3 ẩn này với mình cảm ơn nhiều
3=(a+b)(a+c)
4=(a+b)(b+c)
5=(a+c)(b+c)
cho pt: x4-2x2-3m+5=0
a, tìm x khi m=7
b, Xác định m để pt đã cho có 4 nghiệm phân biệt
c, xác định m để pt đã cho có 3 nghiệm phân biệt .
câu a với câu b mk làm đc rồi mk còn mắc câu c, ai làm được thì giúp mk với ạ . mk cảm ơn nhiều !
\(x^4-2x^2-3m+5=0\left(1\right)\)
a) Thay \(m=7\) vào pt (1), ta được:
\(x^4-2x^2-3.7+5=0\)
\(\Leftrightarrow\) \(x^4-2x^2-21+5=0\)
\(\Leftrightarrow\) \(x^4-2x^2-16=0\)
Đặt \(x^2=t\) , ĐK: \(t\ge0\) , ta được:
\(t^2-2t-16=0\)
(\(a=1\) ; \(b=-2\) ; \(c=-16\) )
Ta có: \(\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-16\right)=68>0\)
\(\Rightarrow\) \(\sqrt{\Delta}=\sqrt{68}=2\sqrt{17}\)
\(\Rightarrow\) \(t_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+2\sqrt{17}}{2.1}=1+\sqrt{17}\) (TMĐK)
\(\Rightarrow\) \(t_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-2\sqrt{17}}{2.1}=1-\sqrt{17}\) (loại vì \(1-\sqrt{17}< 0\), với mọi t )
Với \(t=t_1=1+\sqrt{17}\) , ta có: \(x^2=1+\sqrt{17}\) \(\Rightarrow\) \(x=\pm\sqrt{1+\sqrt{17}}\) \(\Rightarrow\) \(x_1=\sqrt{1+\sqrt{17}}\) , \(x_2=-\sqrt{1+\sqrt{17}}\)
b) Cho VP pt (1) \(=0\) , tìm được m
c) Như câu a) (chỉ cần đổi dấu của nghiệm \(t_2\) thôi)
NOTE: Tức là từ phần giải ra nghiệm \(t_2\) rồi giải tiếp
---- END----
a, b, c là nghiệm của PT \(2x^3-9x^2+6x-1=0\). Không giải PT, tính tổng \(S=\dfrac{a^5-b^5}{a-b}+\dfrac{b^5-c^5}{b-c}+\dfrac{c^5-a^5}{c-a}\)
+) Giải hệ pt: \(\left\{{}\begin{matrix}4\sqrt{x^2+4y-5}=y^2-x+10\\x^3+\left(1-y\right)x^2=\left(x+4\right)y\end{matrix}\right.\)
+) Cho a,b,c>0 và a+b+c=2017
CM: \(\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{ca}+\dfrac{2017c-c^2}{ab}\ge\sqrt{2}\left(\Sigma\sqrt{\dfrac{2017-a}{a}}\right)\)
+) Bài bất đẳng thức:
\(\dfrac{2017a-a^2}{bc}=\dfrac{\left(a+b+c\right)a-a^2}{bc}=\dfrac{ab+ca}{bc}=\dfrac{a}{c}+\dfrac{a}{b}\left(1\right)\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{2017b-b^2}{ca}=\dfrac{b}{a}+\dfrac{b}{c}\left(2\right)\\\dfrac{2017c-c^2}{ab}=\dfrac{c}{a}+\dfrac{c}{b}\left(3\right)\end{matrix}\right.\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow\dfrac{2017a-a^2}{bc}+\dfrac{2017b-b^2}{bc}+\dfrac{2017c-c^2}{ab}=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(\sqrt{2}\left(\sum\sqrt{\dfrac{2017-a}{a}}\right)=\sqrt{2}\left(\sum\sqrt{\dfrac{\left(a+b+c\right)-a}{a}}\right)=\sqrt{2}\left(\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}+\sqrt{\dfrac{a+b}{2}}\right)\)
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge\sqrt{2}\left(\sqrt{\dfrac{a+b}{c}}+\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}\right)\)
*Có: \(\sqrt{2.\dfrac{a+b}{c}}+\sqrt{2.\dfrac{b+c}{a}}+\sqrt{2.\dfrac{c+a}{b}}\le\dfrac{2+\dfrac{a+b}{c}}{2}+\dfrac{2+\dfrac{b+c}{a}}{2}+\dfrac{2+\dfrac{c+a}{b}}{2}=3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)
Ta chỉ cần chứng minh:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge3+\dfrac{\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}}{2}\)
hay \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\) (cái này chị tự chứng minh nhé)
Anh Trần Tuấn Hoàng giỏi BĐT quá nhỉ
a) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
b)Giải phương trình: \(\sqrt[3]{2+x}+\sqrt[3]{5-x}=1\)
c) Cho a, b, c > 0 thỏa mãn biểu thức a+b+c=1
Chứng minh rằng: \(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\le2\)
Mn giúp mình với ạ, mk cần gấp lắm a~. Cảm ơn mn nhiều
a) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (ĐKXĐ: \(x\ne-1;y\ne-4\))
Đặt \(\dfrac{x}{x+1}=a;\dfrac{1}{y+4}=b\left(a\ne0;b\ne0\right)\)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}3a-2b=4\left(1\right)\\2a-5b=9\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow2a=9+5b\Leftrightarrow a=\dfrac{9+5b}{2}\)
Thay \(a=\dfrac{9+5b}{2}\) vào \(\left(1\right)\), ta có:
\(\dfrac{3\left(9+5b\right)}{2}-2b=4\)
\(\Leftrightarrow27+15b-4b=8\)
\(\Leftrightarrow11b=-19\Leftrightarrow b=\dfrac{-19}{11}\)
Thay \(b=\dfrac{-19}{11}\) vào \(\left(2\right)\), ta có:
\(2a-5\cdot\dfrac{-19}{11}=9\)
\(\Leftrightarrow a=\dfrac{2}{11}\)
Với \(a=\dfrac{2}{11}\Rightarrow\dfrac{x}{x+1}=\dfrac{2}{11}\)
\(\Leftrightarrow11x=2x+2\Leftrightarrow x=\dfrac{2}{9}\)
Với \(b=\dfrac{-19}{11}\Rightarrow\dfrac{1}{y+4}=\dfrac{-19}{11}\)
\(\Leftrightarrow-19y-76=11\)
\(\Leftrightarrow y=\dfrac{-90}{19}\)
b,Ta có:
\(PT\Leftrightarrow7+3.\sqrt[3]{2+x}.\sqrt[3]{5-x}\left(\sqrt[3]{2+x}+\sqrt[3]{5-x}\right)=1\)
Thay \(\sqrt[3]{2+x}+\sqrt[3]{5-x}=1\) vào PT
\(\Rightarrow\) \(3.\sqrt[3]{2+x}.\sqrt[3]{5-x}=-6\)
\(\Leftrightarrow\sqrt[3]{2+x}.\sqrt[3]{5-x}=-2\)
\(\Leftrightarrow\left(2+x\right)\left(5-x\right)=-8\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
Thử lại thấy x= - 3, x=6 thỏa mãn
Vậy x= -3, x = 6
b, Đặt \(\sqrt[3]{2+x}=a;\sqrt[3]{5-x}=b\)
Theo đề bài: a+b=1\(\Leftrightarrow a=1-b\)
Ta có \(a^3+b^3=2+x+5-x=7\)(1)
Thay a=1-b vào pt(1) ta được:
\(a^3+b^3=\left(1-b\right)^3+b^3=7\)
\(\Leftrightarrow1-3b+3b^2-b^3+b^3=7\)
\(\Leftrightarrow3b^2-3b-6=0\Leftrightarrow b^2-b-2=0\)
\(\Leftrightarrow\left(b+1\right)\left(b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=-1\\b=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{5-x}=-1\\\sqrt[3]{5-x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5-x=-1\\5-x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-3\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình x=\(\left\{-3;6\right\}\)
giải hệ pt : \(\left\{{}\begin{matrix}a\left(a+b\right)=3\\b\left(b+c\right)=30\\c\left(c+a\right)=12\end{matrix}\right.\)
giải hệ PT : \(\hept{\begin{cases}a\left(a+b\right)=3\\b\left(b+c\right)=30\\c\left(c+a\right)=12\end{cases}}\)
giải hệ pt \(\left\{{}\begin{matrix}a\left(a+b\right)=3\\b\left(b+c\right)=30\\c\left(c+a\right)=12\end{matrix}\right.\)
MN GIUPS MK VS Ạ, MK XIN CẢM ƠN. MK ĐG CẦN RẤT GẤP Ạ.
B1) Cho các số thực dương a,b,c . CMR
a) a^2+b^2+c^2+abc+5>=3(a+b+c)
b) a^2+b^2+c^2 + 2abc +4>=2(a+b+c)+ab+bc+ca.
B2) Cho các số thực a; b; c: Chứng minh rằng
(a^2+1)(b^2+1)(c^2+1)>=5/16 .(a+b+c+d+1)^2.
MN GIÚP MK VS Ạ. MONG ADD DUYỆT Ạ . CẢM ƠN MN.