cho tam giác ABC có độ dài 3 cạnh tỉ lệ với 15;11;9 . Qua A :B:C kẻ các đường cao của tam giác ABC. Tính độ dài đường cao nhỏ nhất
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải chi tiết
Bài 2: Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC.
Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng EB ^ EF.
Bài 5: Cho tam giác ABC có độ dài các cạnh bằng 3cm,4cm,5cm.Chứng minh rằng tam giác ABC vuông.
Bài 6: Cho tam giác ABC có độ dài các cạnh bằng 6cm,8cm,10cm.Chứng minh rằng tam giác ABC vuông.
Bài 7:Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
Bài 2:
Xét tam giác ABH vuông tại H có:
AH2+BH2=AB2(định lí Py-ta-go)
=>242+BH2=252
=>BH2=252-242=49
=>BH=7
Xét tam giác ACH vuông tại H có:
AH2+CH2=AC2(định lí Py-ta-go)
=>242+CH2=262
=>CH2=262-242=100
=>CH=10.
=>BC=BH+CH=10+7=17 (cm)
Bài 5: Ta có: 32+42=52
=> Tam giác ABC vuông (định lí Py-ta-go đảo)
Cho tam giác vuông ABC, đường cao AH chia cạnh huyền thành 2 đoạn thẳng tỉ lệ với nhau theo tỉ lệ 4:3, tính độ dài các cạnh của tam giác biết 1 cạnh góc vuông của tam giác có độ dài là 14 cm
tam giác ABC có chu vi 36 m . độ dài cạnh thứ nhất và cạnh thứ hai tỉ lệ thuận với 1 và 2 . độ dài cạnh thứ hai và cạnh thứ ba tỉ lệ nghịch với 3 và 4 . tính độ dài các cạnh của tam giác ABC
Cho tam giác ABC có cạnh huyền BC = 4cm. độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Tính độ dài các cạnh của tam giác ?
Theo bài ra ta có: Độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Nên ta có:
\(\frac{AB}{3}=\frac{AC}{4}\) \(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2\) \(\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Theo định lí Py-ta-go, tam giác vuông ABC có cạnh huyền BC \(\Rightarrow AB^2+AC^2=BC^2=4^2=16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{16}{25}\)
\(\Rightarrow\frac{AB^2}{9}=\frac{16}{25}\Rightarrow AB^2=5,76\Rightarrow AB=2,4\left(cm\right)\)
\(\frac{AC^2}{16}=\frac{16}{25}\Rightarrow AC^2=10,24\Rightarrow AC=3,2\left(cm\right)\)
Vậy AB = 2,4 cm
AC = 3,2 cm
BC = 4 cm
Tm giác ABC có chu vi 36 cm. Độ dài cạnh thứ nhất và cạnh thứ hai tỉ lệ thuận với 1 và 2. Độ dài cạnh thứ hai và cạnh thứ 3 tỉ lệ nghịch với 3 và 4
Tính độ dài các cạnh của tam giác ABC
Tam giac ABC có chu vi là 36 m. Độ dài cạnh thứ nhất và cạnh thứ 2 tỉ lệ thận với 1 và 2 . Độ dài cạnh thứ hai và cạnh thứ ba tỉ lệ nghịch với 3 và 4 .
Tính độ dài các cạnh của tam giác ABC.
Gọi cạnh thứ 1,2,3 lần lượt là a,b,c
Ta có:\(\frac{a}{1}=\frac{b}{2},3b=4c\) và a+b+c=36
\(\Rightarrow\frac{a}{1}=\frac{b}{2},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{2+4+3}=\frac{36}{9}=4\)(T/C...)
\(\Rightarrow a=4\cdot2=8,b=4\cdot4=16,c=4\cdot3=12\)
Vậy độ dài cạnh thứ 1,2,3 lần lượt là:8m,16m,12m
cho tam giác ABC có chu vi là 44cm biết độ dài ba cạnh AB AC BC lần lượt tỉ lệ với 2 4 5 . tính độ dài cạnh tam giác ABC
Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`
Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`
Nghĩa là: `x/2=y/4=z/5`
Chu vi các cạnh của tam giác là `44 cm`
`-> x+y+z=44`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`
`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)
Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`
Gọi các cạnh của tam giác lần lượt là `a,b,c `tỉ lệ với `2,4,5 (cm)`
`a/2 = b/4 =c/5 ` và ` a+b+c = 44 `
Áp dụng tính chất dãy tỉ số bằng nhau :
`a/2=b/4=c/5 = (a+b+c)/(2+4+5)=44/11 = 4`
Do đó :
`a/2 = 4 => 2.4 = 8 `
`b/4 = 4=> 4.4 = 16 `
`c/5 = 4 => 5.4 = 20`
Vậy các cạnh của tam giác lần lượt là : ` 8(cm) , 16(cm) , 20(cm)`
Tam giác ABC có độ dài ba cạnh tỉ lệ với 3, 4, 5 và độ dài cạnh lớn nhất nhỏ hơn tổng độ dài hai cạnh còn lại là 10 cm. Hãy tính độ dài ba cạnh của tam giác ABC.
Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )
Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)
+) \(\frac{a}{5}=5\Rightarrow a=25\)
+) \(\frac{b}{4}=5\Rightarrow b=20\)
+) \(\frac{c}{3}=5\Rightarrow c=15\)
Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm
Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)
Theo đề bài , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)
=> \(\frac{c+10}{7}=\frac{c}{5}\)
=> 5(c + 10) = 7c
=> 5c + 50 = 7c
=> 50 = 2c
=> c = 25
=> a + b = 25 + 10 = 35
Áp dụng tính chất dãy tỉ số , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)
=> a = 3.5 = 15
b = 4.5 = 20
Gọi các cạnh lần lượt là a ; b ; c ta có a/3 = b/4=c/5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/3 = b/4 = c/5 = \(\frac{b+c-a}{4+5-3}\) = 10/6 cm =5/3 cm
từ đó suy ra :
a/3 = 5/3 cm\(\Rightarrow\) a = 5 cm
b/4 = 5/3 cm \(\Rightarrow\) b = 5/3cm*4=20/3cm
c/5 = 5/3 cm\(\Rightarrow\) c = 5/3 cm *5 =25/3 cm
Vậy a = 5 cm;b = 20/3 cm ; c = 25/3 cm
Cho tam giác ABC có nủa chu vi là 12cm và độ dài các cạnh tỉ lệ với các số 3,4,5. Độ dài cạnh lớn nhất của tam giác ABC là........