Cho tam giác đều ABC. Trên cạnh BC lấy điểm M sao cho BM=1/3 BC. Chứng minh rằng góc BAM < 20 độ
Cho tam giác ABC đều, trên cạnh BC lấy điểm M sao cho BM=1/3 BC. Chứng minh góc BAM < 20 độ
Cho tam giác ABC đều. Trên cạnh BC lấy điểm M sao cho BM=1/3BC . CMR : góc BAM < 20 độ
Gọi N là điểm trên BC sao cho BM = MN = NC
Do tam giác ABC đều nên AB = AC và \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
Từ đó ta có ngay \(\Delta ABM=\Delta ACN\left(c-g-c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAN}\) (Hai góc tương ứng)
Lấy điểm E trên tia đối tia MA sao cho ME = MA
Khi đó ta có ngay \(\Delta ABM=\Delta ENM\left(c-g-c\right)\Rightarrow AB=EN\)
Xét tam giác ABM có góc B = 60o, \(\widehat{BAM}< 30^o\) nên \(\widehat{AMB}>90^o\)
Vậy thì theo quan hệ cạnh góc trong tam giác AB > AM
Suy ra EN > AM
Lại có AM = AN nên EN > AN hay \(\widehat{MAN}>\widehat{MEN}\Rightarrow\widehat{MAN}>\widehat{BAM}\)
Ta có \(\widehat{BAM}+\widehat{MAN}+\widehat{NAC}=60^o\Rightarrow\widehat{MAN}+2\widehat{BAM}=60^o\)
mà \(\widehat{MAN}>\widehat{BAM}\Rightarrow3\widehat{BAM}< 60^o\Rightarrow\widehat{BAM}< 20^o\)
Thiện:
Ta thấy : \(\widehat{BAM}+\widehat{MAN}+\widehat{NAC}=60^o\Rightarrow2\widehat{BAM}+\widehat{MAN}=60^o\)
Do BM < MC nên \(\widehat{MAN}>0^o\Rightarrow2\widehat{BAM}< 60^o\Rightarrow\widehat{BAM}< 30^o\)
cho tam giác ABC cân tại A trên cạnh BC lấy điểm M và N sao cho BM = MN = NC
a, chưng minh góc BAM = CA
b, so sánh góc BAM và góc MAN
Bài 4: Cho tam giác ABC có AB < BC. Tia phân giác của ABC cắt AC tại M. Trên cạnh BC lấy điểm E sao cho BE = BA. a) Chứng minh rằng: BAM = BEM b) Chứng minh rằng: AM = ME c) Chứng minh rằng: MB là tia phân giác của AME d) Chứng minh rằng: AE ⊥ BM e) Chứng minh rằng: AMB ABM
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
b: Ta có: ΔBAM=ΔBEM
nên MA=ME
c: Ta có: ΔBAM=ΔBEM
nên \(\widehat{AMB}=\widehat{EMB}\)
hay MB là tia phân giác của góc AME
Cho tam giác ABC. O là điểm cách đều 3 cạnh của tam giác. Trên cạnh BC lấy điểm M sao cho BM = BA, trên cạnh CB lấy điểm N sao cho CN = CA. Gọi D, E, F lần lượt là hình chiếu của O trên BC, CA, AB. Chứng minh rằng :
a) NE = MF
b) Tam giác MON cân
a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.
Cho /\ ABC đều . Trên cạnh BC lấy điểm M sao cho BM = 1/3 BC . CMR : góc BAM < 200
Cho tam giác ABC vuông tại A. Kẻ tia phân giác của ABC cắt cạnh AC tại M. Trên cạnh BC lấy điểm N sao cho BN = BA.
1) Chứng minh: tam giác BAM = tam giác BNM.
2) Gọi I là giao của BM và AN. Chứng minh I là trung điểm của đoạn thẳng AN.
3) Trên tia đối của tia AB lấy điểm K sao cho AK = NC. Chứng minh ABC = NMC và K, M, N là ba điểm thẳng hàng.
Cíu với ngày kia thi r:(
1: Xét ΔBAM và ΔBNM có
BA=BN
góc ABM=goc NBM
BM chung
Do đó: ΔBAM=ΔBNM
2: ΔBAM=ΔBNM
=>MA=MN
mà BA=BN
nên BM là trung trực của AN
=>I là trung điểm của AN
3: góc ABC+góc C=90 độ
góc NMC+góc C=90 độ
=>góc ABC=góc NMC
1,xét tgBAM và tgBNM có:
BA=BN gt
ABM=NBM gt
Bm chung
vậy 2 tg bằng nhau (c-g-c)
2,xét tgBAI và tgBNI có
BA=BN
ABI=NBI
BI chung
vậy 2tg bằng nhau(c-g-c)
Vì tg BAI=tgBNI (cmt)
suy ra IA=IN (tương ứng)
nên I là trung điểm của AN
cho tam giác ABC, A = 60 độ B > A. vẽ tam giác đều MBC sao cho M và A thuộc cùng một nửa mặt phẳng bờ BC trên cạnh AC lấy điểm N sao cho AN = AB chứng minh rằng a, AMB=NBC b, tia AC là tia phân giác của góc BAM
cho tam giác ABC, A = 60 độ B > A. vẽ tam giác đều MBC sao cho M và A thuộc cùng một nửa mặt phẳng bờ BC trên cạnh AC lấy điểm N sao cho AN = AB chứng minh rằng a, AMB=NBC b, tia AC là tia phân giác của góc BAM