Lấy N∈BC sao cho NC=13BC
BM=MN=NC=BC3
Xét ΔABM và ΔACN, có:
AB=AC( cạnh trong tam giác đều)
Bˆ=Cˆ(góc trong tam giác đều)
BM=NC(cmt)
Vậy: ΔABM=ΔACN(c−g−c)
AM=AN
BAMˆ=CANˆ
ΔAMN cân tại A
Trên tia đối MA lấy H sao cho MA=MH
Xét ΔABM và ΔHMN có:
AM=MH(theo điều giả sử trên)
AMBˆ=HMNˆ(đối đỉnh)
BM=MN( theo điều chứng minh trên)
Vậy: ΔABM=ΔHMN(c-g-c)
AB=NH(cạnh tương ứng)
BAMˆ=MHNˆ(góc tương ứng)
Trong ΔABM có:
Bˆ=60o và BAMˆ<60o do: Aˆ=60o
Nên: AMBˆ>90o
AB lớn nhất tron tam giác ABC (theo quan hệ giữa góc và cạnh của tam giác)
HN lớn nhất trong tam giác HMN
HN>HM(1)
Ta có:
AN=HM(2)
Từ (1) và (2) HN> AN
NHMˆ>MANˆ (Qh giữa góc và cạnh trong một tam giác)
MANˆ>BAMˆ(=CANˆ)
Giả sử:
MANˆ=BAMˆ=CANˆ=Aˆ2=20o
Mà: MANˆ>BAMˆ(=CANˆ)
Vậy: BAMˆ<20o (đcpcm)