\(12x^3-9x^2+3x\\ x^2-y^2+6x+9x\)
Giúp mình ới
1. 9x^2 + 12x + 5 = 11
2. 6x^2 + 16x + 12 = 2x^2
3. 16x^2 + 22x + 11 = 6x + 5
4. 12x^2 + 20x + 10 = 3x^2 - 4x
giúp mình với ạ
chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn
câu 1: 9\(x^2\) + 12\(x\) + 5 =11
(3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11
(3\(x\) + 2)2 = 11 - 1
(3\(x\) + 2)2 = 10
\(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)
Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)}
Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)
6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0
4\(x^2\) + 16\(x\) + 12 = 0
(2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0
(2\(x\) + 4)2 = 4
\(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
S = { -3; -1}
3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5
16\(x^2\) + 22\(x\) - 6\(x\) + 11 - 5 = 0
16\(x^2\) + 16\(x\) + 6 = 0
(4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0
(4\(x\) + 2)2 + 2 = 0 (1)
Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm
S = \(\varnothing\)
Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\)
12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0
9\(x^2\) + 24\(x\) + 10 = 0
(3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0
(3\(x\) + 4)2 = 6
\(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)
S = {\(\dfrac{-\sqrt{6}-4}{3}\); \(\dfrac{\sqrt{6}-4}{3}\)}
- Giải giúp mình những câu này với~
a) \(^{x2+2\sqrt{3x}+\sqrt{3}^2}=\left(x+\sqrt{3}\right)^2\))^2
b)(9x^2 -12x +4) - (y+2)^2
c)x^2-2x+2
b)9x^2 -6x +5
c)30-20x+4x2
Lớp 9 lẫn 7 luôn nhé
a và b chắc của lớp 9 nhỉ
\(x^2-2x+2=x^2-x-x+2\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
\(9x^2-6x+5=9\left(x^2-\frac{2}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{5}{9}\right)\)
\(=9\left(x^2-\frac{1}{3}x-\frac{1}{3}x+\frac{1}{9}+\frac{4}{9}\right)\)
\(=9\left[x\left(x-\frac{1}{3}\right)-\frac{1}{3}\left(x-\frac{1}{3}\right)+\frac{4}{9}\right]\)
\(=9\left[\left(x-\frac{1}{3}\right)^2+\frac{4}{9}\right]\)
\(=9\left(x-\frac{1}{3}\right)^2+4\)
Cái kia tương tự.
giải pt :
a,\(9x^2-6x-5=\sqrt{3x+5}\)
b, \(9x^2+12x-2=\sqrt{3x+8}\)
c, \(x^2-4x-3=\sqrt{x+5}\)
d,\(x^2-6x-2=\sqrt{x+8}\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{8}{3}\)
\(\left(3x+2\right)^2-6-\sqrt{3x+8}=0\)
Đặt \(\sqrt{3x+8}=t\ge0\Rightarrow3x+2=t^2-6\)
\(\left(t^2-6\right)^2-6-t=0\)
\(\Leftrightarrow t^4-12t^2-t+30=0\)
\(\Leftrightarrow\left(t^2+t-5\right)\left(t^2-t-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+8}=3\\\sqrt{3x+8}=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Bài 1 : Tính
a) ( x + 1 ) \(^2\)+ ( x - 2 ) ( x + 3 ) - 4 x
b) ( 6x\(^5\)y\(^2\)-9x\(^4\)y\(3\)+ 12x\(^3\)y\(^4\)) : 3x\(^3\)y\(2\)
a: \(\left(x+1\right)^2+\left(x+3\right)\left(x-2\right)-4x\)
\(=x^2+2x+1+x^2+x-6-4x\)
\(=2x^2-x-6\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
3xy - 3xz-y 2 +yz
x 4 –x 3 +x 2 –x
xy+xz + y 2 +yz
x 2 -6x+9
x 3 +6x 2 +12x+8
4x 2 - (x - y) 2
5x(y + 1) - 2(y + 1)
x 2 - 4x + 4
x 4 -2x 2
3x 2 - 12xy
\(a,=3x\left(y-z\right)-y\left(y-z\right)=\left(3x-y\right)\left(y-z\right)\\ b,=x^3\left(x-1\right)+x\left(x-1\right)=x\left(x^2+1\right)\left(x-1\right)\\ c,=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\\ d,=\left(x-3\right)^2\\ e,=\left(x+2\right)^3\\ f,=\left(2x-x+y\right)\left(2x+x-y\right)=\left(x+y\right)\left(3x-y\right)\\ g,=\left(y+1\right)\left(5x-2\right)\\ h,=\left(x+2\right)^2\\ i,=x^2\left(x^2-2\right)\\ k,=3x\left(x-4y\right)\)
Gỉai các phương trình:
a) \(\sqrt{1-6X+9X^2}\) = 9
b) \(\sqrt{2X-3}\) - \(\sqrt{x+1}\) = 0
c) \(\sqrt{9x^2+12x+4}\) - 2= 3x
a) \(\sqrt{1-6x+9x^2}=9\)
\(\Leftrightarrow\sqrt{\left(1-3x\right)^2}=9\)
\(\Leftrightarrow\left|1-3x\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}1-3x=9\\1-3x=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=1-9\\3x=1+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-8\\3x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=\dfrac{10}{3}\end{matrix}\right.\)
b) \(\sqrt{2x-3}-\sqrt{x+1}=0\) (\(x\ge\dfrac{3}{2}\))
\(\Leftrightarrow\sqrt{2x-3}=\sqrt{x+1}\)
\(\Leftrightarrow2x-3=x+1\)
\(\Leftrightarrow2x-x=1+3\)
\(\Leftrightarrow x=4\left(tm\right)\)
c) \(\sqrt{9x^2+12+4}-2=3x\)
\(\Leftrightarrow\sqrt{\left(3x+2\right)^2}=3x+2\)
\(\Leftrightarrow\left|3x+2\right|=3x+2\)
\(\Leftrightarrow3x+2\ge0\)
\(\Leftrightarrow3x\ge-2\)
\(\Leftrightarrow x\ge-\dfrac{2}{3}\)
a: =>|3x-1|=9
=>3x-1=9 hoặc 3x-1=-9
=>x=-8/3 hoặc x=10/3
b: =>căn 2x-3=căn x+1
=>2x-3=x+1
=>x=4
c: =>|3x+2|=3x+2
=>3x+2>=0
=>x>=-2/3
Tìm thương của phép chia: [9x^3 (x^2 - 1) − 6x^2 (x^2 - 1)^2 + 12x(x^2 -1)]: 3x(x^2 - 1). Giúp mik vs, mik cần gấp!!
[9x³(x² - 1) - 6x²(x² - 1) + 12x(x² - 1)] : 3x(x² - 1)
= [9x³(x² - 1) : 3x(x² - 1)] - [6x²(x² - 1) : 3x(x² - 1) + [12x(x² - 1) : 3x(x² - 1)]
= 3x² - 2x + 4
Tìm x;
(12x^4-6x^3-9x^2):(-3x^2)-(2-3x)(2+3x)=-(3x+1)
Có ai làm dc câu này ko thầy mk cho đề hack não quá
\(\frac{12x^4-6x^3-9x^2}{-3x^2}-\left(2-3x\right)\left(2+3x\right)=-\left(3x+1\right)\)\(Dk:-3x^2\ne0\)\(< =>x\ne0\)
<=> \(-4x^2+2x+3-\left(2-3x\right).\left(2+3x\right)=-\left(3x+1\right)\)
<=> \(-4x^2+2x+3-4-6x+6x+9x^2=-3x-1\)
<=>\(5x^2+5x=0\)
<=> \(\orbr{\begin{cases}x=-1\left(n\right)\\x=0\left(l\right)\end{cases}}\)