tìm phương trình đường thẳng d biết rằng d đi qua 2 điểm phân biệt M (2;1) và N(5;-1)
Trong mặt phẳng tọa độ xOy cho đường thẳng (d) có phương trình: y = 2mx + 5 và parabol (P): y = x2. a. Tìm m để đường thẳng (d) đi qua điểm A(1; 3). b. Chứng tỏ rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m. c. Gọi lần lượt là hoành độ giao điểm của (d) và (P). Tìm m sao cho: X1 mũ hai + x2 mũ hai =4
a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)
b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)
\(\Rightarrow x^2-2mx-5=0\left(I\right)\)
Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt.
c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)
Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)
Vậy không có m thỏa mãn ycbt.
Trong mặt phẳng Oxy, cho parabol P : y = -x 2 và đường thẳng d đi qua điểm M 0;-1 có hệ số góc k. c Viết phương trình đường thẳng d . Chứng minh rằng với mọi giá trị của ,k d luôn cắt P tại hai điểm phân biệt A,B. giúp mình nha
Bài 12: Cho (P): \(y=\dfrac{x^2}{4}\)và đường thẳng (d) đi qua điểm I \(\left(\dfrac{3}{2};1\right)\) có hệ số góc là m
1. Vẽ (P) và viết Phương trình (d)
2. Tìm m sao cho (d) tiếp xúc (P)
3. Tìm m sao cho (d) và (P) có hai điểm chung phân biệt
a/ Xác định phương trình đường thẳng (d) đi qua hai điểm A(2; 2) và B(1; 5)
b/ Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (ẩn x). Tìm m để phương trình có
hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện:
2 2
1 2 x x 7
a: Theo đề, ta có hệ:
2a+b=2 và a+b=5
=>a=-3 và b=8
Cho hàm số y = x 3 - 3 x + 2 C . Biết rằng đường thẳng d : y = a x + b cắt đồ thị C tại ba điểm phân biệt M, N, P. Tiếp tuyến tại ba điểm M, N, P của đồ thị C cắt C tại các điểm M ' , N ' , P ' (tương ứng khác M, N, P). Khi đó đường thẳng đi qua ba điểm M ' , N ' , P ' có phương trình là
A. y = 4 a + 9 x + 18 - 8 b
B. y = 4 a + 9 x + 14 - 8 b
C. y = a x + b
D. y = - 8 a + 18 x + 18 - 8 b
tìm phương trình đường thẳng (d) đi qua I(0;1) và cắt (P) y=x2 tại hai điểm phân biệt M,N sao cho MN=2\(\sqrt{10}\)
Viết phương trình đường thẳng d biết rằng d đi qua 2 điểm phân biệt M (2 ; 1) và n (-5; 1)
Lời giải:
Vì $y_M=y_N=1$ nên đường thẳng đi qua 2 điểm $M,N$ có dạng $y=1$
Tìm phương trình đường thẳng (d) đi qua điểm I (0; 1) và cắt parabol (P): y = x 2 tại hai điểm phân biệt M và N sao cho MN = 2 10
A. y = 2x + 1; y = −2x – 1
B. y = 2x + 1; y = −2x + 1
C. y = 2x + 1; y = 2x – 1
D. y = −2x + 2; y = −2x + 1
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3