Những câu hỏi liên quan
TT
Xem chi tiết
NM
14 tháng 12 2021 lúc 22:53

\(b,\text{PT hoành độ giao điểm: }2x+1=x-1\Leftrightarrow x=-2\Leftrightarrow y=-3\Leftrightarrow A\left(-2;-3\right)\\ c,\text{Gọi góc đó là }\alpha\\ \text{Vì }1>0\Leftrightarrow\alpha< 90^0\\ \text{Hệ số góc }\left(d_2\right):1\Leftrightarrow\tan\alpha=1\\ \Leftrightarrow\alpha=45^0\)

Bình luận (0)
TT
Xem chi tiết
NL
14 tháng 4 2022 lúc 15:00

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H9
7 tháng 12 2023 lúc 7:48

a) 

b) Ta có đường thẳng đi qua điểm H(0;-5) nên phương trình đường thẳng đi qua H là:

\(y=0x-5\Rightarrow y=-5\) 

Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-x\) là:

\(-5=-x\)

\(\Rightarrow x=5\)

Tọa độ điểm A là (5;-5) 

Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-\dfrac{1}{2}x\) là:

\(-5=-\dfrac{1}{2}x\)

\(\Rightarrow\dfrac{1}{2}x=5\)

\(\Rightarrow x=5:\dfrac{1}{2}\)

\(\Rightarrow x=10\)

Tọa độ điểm B là (10;-5) 

c) Ta có: A(5;-5) và B(10;-5) 

Độ dài đường thẳng AB là \(10-5=5\left(đvđd\right)\) 

Có A(5;-5) ⇒ HA = 5 (đvđd) 

Xét tam giác OHA vuông tại H áp dụng định lý Py-ta-go ta có: 

\(OA^2=HA^2+OH^2\) (tọa độ điểm H(0;-5) nên OH = 5 đvđd) 

 \(\Rightarrow OA=\sqrt{5^2+5^2}=\sqrt{50}=5\sqrt{2}\left(đvđd\right)\) 

Có B(10;-5) ⇒ HB = 10 (đvđd) 

Xét tam giác OHB vuông tại H áp dụng định lý Py-ta-go ta có:

\(OB^2=HB^2+OH^2\)

\(\Rightarrow OB=\sqrt{10^2+5^2}=\sqrt{125}=5\sqrt{5}\left(đvđd\right)\)

Chu vi: \(C_{OAB}=AB+OA+OB=5+5\sqrt{2}+5\sqrt{5}\approx23,25\left(đvđd\right)\) 

Diện tích: \(S_{OAB}=\dfrac{1}{2}\cdot OH\cdot AB=\dfrac{1}{2}\cdot5\cdot5=12,5\left(đvdt\right)\)

Bình luận (0)
H24
Xem chi tiết
TD
Xem chi tiết
NT
18 tháng 12 2021 lúc 22:46

Chọn A

Bình luận (1)
H24
Xem chi tiết
NT
17 tháng 5 2023 lúc 10:37

loading...

Bình luận (0)
LN
Xem chi tiết
DH
Xem chi tiết
PV
9 tháng 4 2016 lúc 16:19

B A K H C E I D

Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.

Gọi I là giao điểm của AC và BD

Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)

Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)

Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)

Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE

- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)

Do I thuộc (C) nên có phương trình :

\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)

- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :

\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)

- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)

Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)

Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)

Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)

Bình luận (1)
PB
Xem chi tiết
CT
9 tháng 5 2018 lúc 15:59

Đáp án A

Ta có I ( 1 ; - 2 ) , I ' - 2 ; 1 ⇒ v → = I I ' → = - 3 ; 3 .

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 6 2019 lúc 18:14

Bình luận (0)