\(2\sqrt{3}=\dfrac{2\sqrt{x}}{x}\)
Giúp mình với
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{2\sqrt[]{x}-1}{\sqrt{x}-3}\)-\(\dfrac{2x-\sqrt{x}-3}{x-9}\)
mọi ng làm giúp mình với
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\) (ĐK: \(x\ge0;x\ne9\))
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{2x-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\text{x}-3\sqrt{x}+2x+6\sqrt{x}-\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(\left(\dfrac{x+3\sqrt{x}-2}{x-9}-\dfrac{1}{\sqrt{x}+3}\right)\)\(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
RÚT GỌN GIÚP MÌNH VỚI
\(=\left(\dfrac{x+3\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
giúp mình câu rút gọn với ạ :3
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\)
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}(x \geq 0,x \neq 1\)
`=((2x+1-x+\sqrtx)/(x\sqrtx-1))(((\sqrtx+1)(x-\sqrtx+1))/(\sqrtx+1)-\sqrtx)+(2-2sqrtx)/sqrtx`
`=((x-\sqrtx+1)/((\sqrtx-1))(x+sqrtx+1)))(x-2\sqrtx+1)-(2\sqrtx-2)/sqrtx`
`=(1/(\sqrtx-1))(\sqrtx-1)^2-(2(\sqrtx-1))/sqrtx`
`=\sqrtx-1-(2(\sqrtx-1))/sqrtx`
`=(x-\sqrtx-2\sqrtx+2)/sqrtx`
`=(x-3sqrtx+2)/sqrtx`
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}(x \geq 0,x \neq 1\)
`=((2x+1-x+\sqrtx)/(x\sqrtx-1))(((\sqrtx+1)(x-\sqrtx+1))/(\sqrtx+1)-\sqrtx)+(2-2sqrtx)/sqrtx`
`=((x-\sqrtx+1)/((\sqrtx-1))(x+sqrtx+1))))(x-2\sqrtx+1)-(2\sqrtx-2)/sqrtx`
`=(1/(\sqrtx-1))(\sqrtx-1)^2-(2(\sqrtx-1))/sqrtx`
`=\sqrtx-1-(2(\sqrtx-1))/sqrtx`
`=(x-\sqrtx-2\sqrtx+2)/sqrtx`
`=(x-3sqrtx+2)/sqrtx`
có thể giúp mình giải bài này với đc k ạ mình đang cần gấp (xin cảm ơn)
Bài 1:
a,\(3x-7\sqrt{x}+4=0\)
b, \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{6-\sqrt{x}}{7-\sqrt{x}}\)
d, \(\sqrt{x-3}-\dfrac{5}{3}\sqrt{9x-27}+\dfrac{3}{2}\sqrt{4x-12}=-1\)
Bài 2:
a, \(\sqrt{x^2+6x+9}=3x-6\)
b, \(\sqrt{3x^2}=x+2\)
c, \(\sqrt{x^2-4x+4}-2x+5=0\)
d, \(x^2-2\sqrt{7x}+7=0\)
Bài 3:
a, \(\sqrt{3+x}+\sqrt{6-x}=3\)
b, \(\sqrt{3+x}-\sqrt{2-x}=1\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 1
a, `3x-7\sqrt{x}+4=0` ĐKXĐ : `x>=0`
`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`
`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`
`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`
TH1 :
`3\sqrt{x}-4=0`
`<=>\sqrt{x}=4/3`
`<=>x=16/9` ( tm )
TH2
`\sqrt{x}-1=0`
`<=>\sqrt{x}=1` (tm)
Vậy `S={16/9;1}`
b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17` ĐKXĐ : `x>=1`
`<=>(1/2-9/2+3)\sqrt{x-1}=-17`
`<=>-\sqrt{x-1}=-17`
`<=>\sqrt{x-1}=17`
`<=>x-1=289`
`<=>x=290` ( tm )
Vậy `S={290}`
Bài 1:
a) Ta có: \(3x-7\sqrt{x}+4=0\)
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Bài 2.4 Chứng minh với mọi giá trị của x để biểu thức có nghĩa thì giá trị của:
𝐴= \((\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x+3}}{2\sqrt{x}+2}).\dfrac{4x-4}{5}\) không phụ thuộc vào x.
ai bt giúp mình với mình đang cần gấp
A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)
A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)
A = 4
Vậy A không phụ thuộc vào x
Chúc bn học tốt!
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)
\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)
\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)
\(=10\cdot\dfrac{2}{5}=4\)
Rút gọn biểu thức
N=\(\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\)(với x>0, x\(\ne\)2)
Giúp mình với
N=\(\dfrac{x\sqrt{2}}{\sqrt{2x}\left(\sqrt{2}+\sqrt{x}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
N=\(\dfrac{\sqrt{x}}{\sqrt{2}+\sqrt{x}}+\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{2}}\)=1
Giúp mình với!
Cho biểu thức: C = \(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\times\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
a) Rút gọn C.
b) Tìm các giá trị của x để C = \(\sqrt{x}\)
c) Tìm giá trị của C, biết |2x - 5| = 3.
d) So sánh C và \(C^2\)
a: \(C=\dfrac{3x+3\sqrt{x}-3-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{2x+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để \(C=\sqrt{x}\) thì \(x-\sqrt{x}=\sqrt{x}+1\)
=>\(x-2\sqrt{x}-1=0\)
=>\(\Leftrightarrow x=3+2\sqrt{2}\)
c: |2x-5|=3
=>2x-5=3 hoặc 2x-5=-3
=>2x=2 hoặc 2x=8
=>x=4(nhận) hoặc x=1(loại)
Khi x=4 thì \(C=\dfrac{2+1}{2-1}=3\)
Giải các phương trình sau:
a/ \(\sqrt{\dfrac{\sqrt{x^2+4356+x}}{x}-\sqrt{x\sqrt{x^2+4356}-x^2}}\) =5
b/\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{3x-8}\)
GIÚP MÌNH VỚI Ạ!!!
Q = (1 - \(\dfrac{1}{\sqrt{x}}\))\(^2\):(\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\))
Các bạn giúp mình với
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)^2:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\cdot\sqrt{x}}=\dfrac{x-1}{x}\)
\(Q=\left(1-\dfrac{1}{\sqrt{x}}\right)^2:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) (ĐK: x > 0)
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)^2:\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)^2}{x}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(Q=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}\)
\(Q=\dfrac{x-1}{x}\)
\(Q=\left(1-\dfrac{1}{\sqrt{x}}\right)^2:\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)(ĐKXĐ: x > 0)
\(=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)^2:\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x}:\left[\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{x}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x}\)
\(=\dfrac{x-1}{x}\)