Cho cấp số nhân b n thỏa mãn b 2 > b 1 ≥ 1 và hàm số f x = x 3 - 3 x sao cho f log 2 b 2 + 2 = f log 2 b 1 . Giá trị nhỏ nhất của n để b n > 5 100 bằng
A.333
B.229
C.234
D.292
Cho dãy số \((u_n) \) thỏa mãn \(S_n=u_1+u_2+...+u_n=2^n-1\). Chứng minh rằng: dãy số \((u_n) \) là cấp số nhân.
Cho cấp số cộng a n , cấp số nhân b n thỏa mãn a 2 > a 1 ≥ 0 , b 2 > b 1 ≥ 1 và hàm số và f ( x ) = x 3 - 3 x sao cho f a 2 + 2 = f a 1 và f log 2 b 2 +2= f ( log 2 b 1 ) . Tìm số nguyên dương n(n>1) nhỏ nhất sao cho b n > 2018 a n .
A. 20
B. 10
C. 14
D. 16
Cho cấp số nhân b n thỏa mãn b 2 > b 1 ≥ 1 và hàm số thỏa mãn điều kiện f x = x 3 - 3 x Giá trị nhỏ nhất của n để b n > 5 100 bằng
A. 234
B. 229
C. 333
D. 292
Cho cấp số cộng (an), cấp số nhân (bn) thỏa mãn a2>a1≥0, b2>b1≥1 và hàm số f(x) = x3 – 3x sao cho f(a2) + 2 = f(a1) và f(log2b2) + 2 = f(log2b1). Tìm số nguyên dương n (n>1) nhỏ nhất sao cho bn > 2018an
A. 20
B. 10
C. 14
D. 16
Cho cấp số cộng ( a n ), cấp số nhân ( b n ) thỏa mãn a 2 > a 1 ≥ 0 , b 2 > b 1 ≥ 1 và hàm số f x = x 3 - 3 x sao cho f a 2 + 2 = f a 1 và f log 2 b 2 + 2 = f log 2 b 1 . Tìm số nguyên dương n nhỏ nhất sao cho b n > 2019 a n
A. 17.
B. 14
C. 15.
D. 16
Cho mình xin đáp án và lời giải chi tiết với ạ
1. cho cấp số nhân có u1=2, q=2. Tính Sn
A. Sn=2n
B. Sn=2n-1
C.Sn=2n-2
D. Sn=2n+1-2
2. Cho cấp số cộng thỏa mãn\(\left\{{}\begin{matrix}u_2+u_5=12\\u_4+u_8=22\end{matrix}\right.\). Tính Sn
A. Sn=n2 B. Sn=2n C.Sn=2n-1
3. cho cấp số nhân thỏa mãn\(\left\{{}\begin{matrix}u_1+u_2=4\\u_4+u_1=28\end{matrix}\right.\)
Tìm q
A.. q=2 B.q=3 C.q=4 D.q=5
1. Áp dụng công thức tổng cấp số nhân:
\(S_n=u_1.\dfrac{q^n-1}{q-1}=2.\dfrac{2^n-1}{2-1}=2.\left(2^n-1\right)=2^{n+1}-2\)
2. \(\left\{{}\begin{matrix}u_2+u_5=12\\u_4+u_8=22\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(u_1+d\right)+\left(u_1+4d\right)=12\\\left(u_1+3d\right)+\left(u_1+7d\right)=22\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u_1+5d=12\\2u_1+10d=22\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=2\end{matrix}\right.\)
\(\Rightarrow u_n=u_1+\left(n-1\right)d=1+\left(n-1\right)2=2n-1\)
\(\Rightarrow S_n=\dfrac{n\left(u_1+u_n\right)}{2}=\dfrac{n\left(1+2n-1\right)}{2}=n^2\)
3. \(\left\{{}\begin{matrix}u_1+u_2=4\\u_4+u_1=28\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_1q=4\\u_1q^3+u_1=28\end{matrix}\right.\)
\(\Rightarrow\dfrac{q^3+1}{q+1}=\dfrac{28}{4}\Rightarrow q^2-q+1=7\)
\(\Rightarrow q^2-q-6=0\Rightarrow\left[{}\begin{matrix}q=3\\q=-2\end{matrix}\right.\)
1, Cho cấp số cộng \(\left(u_n\right)\) thỏa mãn:
\(\left\{{}\begin{matrix}u_1+u_3=4\\u_2+u_4-u_5=5\end{matrix}\right.\)
Tính \(S=u_2+u_4+...+u_{50}\)
2, Cho a+b+c≠0. Chứng minh:
a, b, c lập thành cấp số cộng ⇔ \(a^2+ab+b^2\); \(a^2+ac+c^2\); \(b^2+bc+c^2\) lập thành cấp số cộng.
3, Cho dãy số \(\left(u_n\right)\): \(\left\{{}\begin{matrix}u_1=-2\\u_{n+1}=\dfrac{u_n}{1-u_n}\end{matrix}\right.\)
Tính \(u_{100}\)
Mọi người giúp mình với ạ!!! Mình cảm ơn nhiều!!!
3: Ta có \(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}-1\).
Do đó \(\dfrac{1}{u_{100}}=\dfrac{1}{u_{99}}-1=\dfrac{1}{u_{98}}-2=...=\dfrac{1}{u_1}-99=\dfrac{1}{-2}-99=\dfrac{-199}{2}\Rightarrow u_{100}=\dfrac{-2}{199}\).
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Bài 4:
a) Tìm số nguyên thỏa mãn -2n+1 chia hết cho n-2
b) tìm số nguyên n thỏa mãn (n-2) chia hết cho (3n+1)
không ạ mình hỏi các bạn bài này ạ!