Cho tam giác ABC có A=90°, a, √6/3, b, c theo thứ tự lập thành cấp số nhân. Tam giác ABC là tam giác có đặc điểm gì
Cho tam giác ABC có A=90°, a, √6/3, b, c theo thứ tự lập thành cấp số nhân. Tam giác ABC là tam giác có đặc điểm gì
\($\hepl{\begin{matrix}u_1=1\\u_{n+1}=2u_n+6\end{matrix}}$\)
Tìm số hạng tổng quát của dãy số sau
Cho cấp số nhân thỏa mãn u1+u2+u3=13;u4-u1=26 . Tổng 8 số hạng đầu của cấp số nhân (un) là
\(\left\{{}\begin{matrix}u1+u2+u3=13\\u4-u1=26\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+u_1\cdot q+u_1\cdot q^2=13\\u_1\cdot q^3-u_1=26\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q^3-1\right)=26\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1+q+q^2}{\left(q-1\right)\left(q^2+q+1\right)}=\dfrac{13}{26}=\dfrac{1}{2}\\u_1\left(q^3-1\right)=26\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{q-1}=\dfrac{1}{2}\\u_1\left(q^3-1\right)=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q-1=2\\u_1=\dfrac{26}{q^3-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}q=2+1=3\\u_1=\dfrac{26}{3^3-1}=1\end{matrix}\right.\)
Tổng 8 số hạng đầu của cấp số nhân là:
\(\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{1\cdot\left(1-3^8\right)}{1-3}=3280\)
\(\left\{{}\begin{matrix}u_1+u_2+u_3=13\\u_4-u_1=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+u_1.q+u_1.q^2=13\\u_1.q^3-u_1=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q^3-1\right)=26\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2\right)=13\\u_1\left(q-1\right)\left(q^2+q+1\right)=26\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13.\left(q-1\right)=26\\u_1.\left(q^3-1\right)=26\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}q=3\\u_1=1\end{matrix}\right.\)
\(S_8=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{1.\left(1-3^8\right)}{1-3}=3280\)
Cứ đầu tháng anh sang gửi vào ngân hàng 2 triệu đồng với lãi suất 0,8%/tháng.hỏi sau 1 năm số tiền lãi anh sang thu được là bao nhiêu
Ai đó làm ơn giúp mình với ạ, mình cảm ơn rất nhiều 1.Cho cấp số nhân(Un). Tìm U1 và q. Biết rằng a. U1 + u6= 165; u3 + u4=60 2. Tìm số hạng đầu và công bội của cấp số nhân, biết a. U4- u2= 72; U5- u3=144 b. u1- u3+u5=65;u1+u7=325 c. u3+u5=90; u2-u6=240 d. u1+u2+u3=14; u1.u2.u3=64
Để tìm U1 và q, ta sử dụng hệ phương trình sau:
U1 + U6 = 165U3 + U4 = 60Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4
Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)
Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1
Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)
Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.
Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:
a. U4 - U2 = 72 U5 - U3 = 144
Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72
Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)
Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.
b. U1 - U3 + U5 = 65 U1 + U7 = 325
Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1
Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)
Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.
c. U3 + U5 = 90 U2 - U6 = 240
Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240
Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)
Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.
d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64
Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2
Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64
Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.
Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.
Cho cấp số nhân (un) có u2=6 và u5=48. Biết tổng n số hạng đầu tiên của cấp số nhân đã cho bằng 381. Giá trị của n nằm trong khoảng nào? A. (3;5) B. (10;12) C. (6;11) D. (11;20)
Đáp án là C. Vì:
Gọi d là công bội của dãy cấp số nhân \((u_n) \)
⇒ \(u_n=d.u_{n-1}=d^2.u_{n-2}=...=d^{n-2}.u_2=d^{n-1}.u_1\)
Suy ra: \(u_5=d^3.u_2 \Rightarrow d^3=\dfrac{u_5}{u_2}=\dfrac{48}{6}=8 \Rightarrow d=2\)
Có: \(u_2=d.u_1 \Leftrightarrow u_1=\dfrac{u_2}{d}=\dfrac{6}{2}=3\)
Theo đề: \(u_1+u_2+...+u_n=381 \)
\(\Leftrightarrow u_1+d.u_1+d^2.u_1+...+d^{n-1}u_1=381\)
\(\Leftrightarrow u_1(1+d+d^2+...+d^{n-1})=381\)
Mặt khác: \(u_1(1+d+d^2+...+d^{n-1})=3.\dfrac{d^n-1}{d-1} =3.\dfrac{2^n-1}{2-1}=3.(2^n-1)\)
\(\Rightarrow 3.(2^n-1)=381 \Leftrightarrow 2^n-1=127 \Leftrightarrow 2^n=128=2^7 \Rightarrow n=7\).
Vậy n = 7 thuộc (6;11)
Cho cấp số nhân thoả mãn: \(\left\{{}\begin{matrix}u_5-u_1=15\\u_4-u_2=6\end{matrix}\right.\). Tính \(u_1\) ?
\(\left\{{}\begin{matrix}u_5-u_1=15\\u_4-u_2=6\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}u_1.q^4-u_1=15\\u_1.q^3-u_1.q=6\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}u_1\left(q^4-1\right)=15\\u_1\left(q^3-q\right)=6\end{matrix}\right.\)
⇔ \(\dfrac{q^4-1}{q^3-q}\) = \(\dfrac{15}{6}\) ⇔ \(\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}\) = \(\dfrac{5}{2}\)
⇔ \(2q^2\)+2 - \(5q\)= 0
⇔\(\left[{}\begin{matrix}q=2\rightarrow u_1=1\\q=\dfrac{1}{2}\rightarrow u_1=-16\end{matrix}\right.\)
Lời giải:
Gọi công bội là $q$ thì 3 số hạng trên là $a; aq; aq^2$
Theo bài ra ta có:
$a+aq+aq^2=a(1+q+q^2)=\frac{a(q^3-1)}{q-1}=19(*)$
$a.aq.aq^2=(aq)^3=216=6^3$
$\Rightarrow aq=6\Rightarrow a=\frac{6}{q}$. Thay vào $(*)$ và giải pt ẩn $q$ thôi bạn.
Tìm số hạng đầu và công bội của cấp số nhân \(\left(u_n\right)\), biết:
\(\left\{{}\begin{matrix}u_1-u_3+u_5=65\\u_1+u_7=325\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1-u_1-2q+u_1+4q=65\\u_1+u_1+6q=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+2q=65\\2u1+6q=325\end{matrix}\right.\)
=>u1=-130; q=195/2
`u_n = u_1 + (n-1).d`
`{(u_1-u_3+u_5=65),(u_1+u_7=325):}`
`<=>{(u_1-u_1-2d+u_1+4d=65),(u_1+u_1+6d=325):}`
`<=>{(u_1+2d=65),(2u_1+6d=325):}`
`<=>{(u_1=-130),(u_2=195/2):}`
`u_n=u_1 . q^(n-1)`
`{(u_1-u_3+u_5=65),(u_1+u_7=325):}`
`<=>{(u_1 -u_1 .q^2 +u_1 .q^4=65),(u_1+u_1 .q^6=325):}`
`<=>{(u_1(1- q^2 + q^4)=65 \(1)),(u_1 .(1+q^6=325 \(2)):}`
Lấy (2) : (1) được: `(q^6+1)/(q^4-q^2+1)=5`
`<=>q=+-2`
TH1: `q=2=>u_1=5`
TH2: `q=-2=> u_1=5`
Vậy `(u_1;q)=(5;2),(5;-2)`
Bài 1: Lương hàng năm (triệu đồng) của một chuyên gia lập thành một cấp số nhân, với số hạng đầu \(u_1=240\) và công bội \(q=1,05\). Hãy tính tổng số lương của chuyên gia đó sau 10 năm chính là tổng của 10 số hạng đầu của cấp số nhân này và bằng bao nhiêu?
Tổng số lương của chuyên gia đó sau 10 năm là:
\(S=\dfrac{10\cdot\left[2\cdot240+10\cdot1.05\right]}{2}=2452.5\left(đồng\right)\)