Cho cấp số cộng ( a n ), cấp số nhân ( b n ) thỏa mãn a 2 > a 1 ≥ 0 , b 2 > b 1 ≥ 1 và hàm số f x = x 3 - 3 x sao cho f a 2 + 2 = f a 1 và f log 2 b 2 + 2 = f log 2 b 1 . Tìm số nguyên dương n nhỏ nhất sao cho b n > 2019 a n
A. 17.
B. 14
C. 15.
D. 16
Cho cấp số nhân b n thỏa mãn b 2 > b 1 ≥ 1 và hàm số thỏa mãn điều kiện f x = x 3 - 3 x Giá trị nhỏ nhất của n để b n > 5 100 bằng
A. 234
B. 229
C. 333
D. 292
Cho các số thực dương a 1 , a 2 , a 3 , a 4 theo thứ tự lập thành một cấp số cộng và các số thực dương b 1 , b 2 , b 3 , b 4 theo thứ tự lập thành cấp số nhân. Biết rằng a 1 = b 1 và a 4 = 32 5 b 4 . Giá trị nhỏ nhất của biểu thức a 2 + a 3 b 2 + b 3 bằng
A. 16 5
B. 11 5
C. 17 5
D. 12 5
Cho các số thực dương a 1 , a 2 , a 3 , a 4 , a 5 theo thứ tự lập thành cấp số cộng và các số thực dương b 1 , b 2 , b 3 , b 4 , b 5 theo thứ tự lập thành cấp số nhân. Biết rằng a 1 = b 1 và a 5 = 176 17 b 5 Giá trị nhỏ nhất của biểu thức a 2 + a 3 + a 4 b 2 + b 3 + b 4 bằng
A. 16 17
B. 48 17
C. 32 17
D. 24 17
Cho các số thực dương a 1 , a 2 , a 3 , a 4 , a 5 theo thứ tự lập thành cấp số cộng và các số thực dương b 1 , b 2 , b 3 , b 4 , b 5 theo thứ tự lập thành cấp số nhân. Biết rằng a 1 = b 1 và a 5 = 176 17 b 5 . Giá trị nhỏ nhất của biểu thức a 2 + a 3 + a 4 b 2 + b 3 + b 4 bằng
A. 16 17
B. 48 17
C. 32 17
D. 24 17
Cho cấp số nhân b n thỏa b 2 > b 1 ≥ 1 , hàm f x = x 3 - 3 x thỏa f log 2 b 2 + 2 = f log 2 b 1 . Giá trị nhỏ nhất của n để b n > 5 100
A. 234
B. 229
C. 333
D. 292
Cho cấp số nhân ( u n ) thoả mãn u 2 ≥ 100 u 1 ≥ 1 . Đặt f ( x ) = x 3 - 3 x 2 . Biết f ( l o g u 2 ) + 4 = f ( l o g u 1 ) . Tìm số tự nhiên n nhỏ nhất sao cho u n > 10 2018 .
A. 1010.
B. 2020.
C. 2019.
D. 1011.
Cho hai cấp số cộng hữu hạn ( a n ) và ( b n ) đều có 100 số hạng và a 1 = 4 , a 2 = 7 ,..., a 100 và b 1 = 1 , b 2 = 6 , . . . , b 100 . Hỏi có bao nhiêu số có mặt đồng thời trong cả hai dãy số trên ?
A. 32.
B. 20.
C. 33.
D. 53.
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn [ f ' ( x ) ] 2 + f ( x ) f '' ( x ) ≥ 1 , ∀ x ∈ [ 0 ; 1 ] và f 2 ( 0 ) + f ( 0 ) . f ' ( 0 ) = 3 2 . Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 ( x ) d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2