Cho hai số phức z 1 = 3 - 7 i và z 2 = 2 + 3 i . Tìm số phức z = z 1 + z 2 .
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hai số phức z1=1+i , z2=3-7i. Tình modun của số phức z1-z2
\(z_1-z_2=1+i-\left(3-7i\right)=1+i-3+7i=-2+8i\)
\(\Rightarrow\left|z_1+z_2\right|=\sqrt{\left(-2\right)^2+8^2}=2\sqrt{17}\)
bài 1 a/tìm số phức z biết \(\left|z\right|+z=3+4i\)
b/ cho các số phức z1 z2 thỏa mãn z1+3z1z2=(-1+i)z2 và 2z1-z2=3+2i.tìm modun của số phức w=\(\frac{z1}{z2}\)+z1+z2
bài 2 a/giải pt trên tập số phức 2\(z^4\)-7\(z^3\)+9\(z^2\)+2=0
b/cho số phức z=1+i\(\sqrt{3}\).Hãy tìm dạng lượng giác của các số phức z , \(\overline{z}\) , -z,\(\frac{1}{z}\)
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thoả mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = z + 2 2 - z - i 2 đạt giá trị lớn nhất. Môđun của số phức z - 2 - i bằng
A. 5
B. 9
C. 25
D. 5
Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = | z + 2 | 2 - | z - i | 2 đạt giá tri lớn nhất. Tính môđun của số phức z+i
Cho hai số phức z = (2x+3) + (3y-1)i và z' = (y-1)i. Ta có z = z' khi:
A . x = 3 2 ; y = 0
B . x = - 3 2 ; y = 0
C . x = 3 ; y = 1 3
D . x = 0 ; y = - 3 2
Cho hai số phức z=(2x+3) + (3y-1)i và z'=3x + (y+1)i. Khi z=z', chọn khẳng định đúng.
Cho hai số phức z 1 = 2 + i và z 2 = 5 - 3 i . Số phức liên hợp của số phức z = z 1 ( 3 - 2 i ) + z 2 là
A. z ¯ = - 13 - 4 i
B. z ¯ = - 13 + 4 i
C. z ¯ = 13 - 4 i
D. z ¯ = 13 + 4 i
Cho N là điểm biểu diễn số phức z thỏa mãn \(\dfrac{z+2-3i}{z-3}=1-i\) và M là điểm biểu diễn số phức z' thoả mãn \(\left|z'-2-i\right|+\left|z'+3-3i\right|=\sqrt{29}\). Tìm giá trị nhỏ nhất của MN
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1