Những câu hỏi liên quan
PB
Xem chi tiết
CT
12 tháng 5 2019 lúc 8:46

Chọn C

Ta có: .

Số hạng tổng quát của khai triển là: . Hệ số của x k  trong khai triển là:  C n k

Hệ số của số hạng chứa  x 9 trong biểu thức P(x) là:

 .

Bình luận (0)
JP
Xem chi tiết
NH
26 tháng 4 2023 lúc 21:44

Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)

\(=C^k_5.2^k.x^{k+1}\)

Mà ta cần tìm số hạng của x5

\(\Rightarrow k+1=5\Leftrightarrow k=4\)

Vậy số hạng của x5 là: \(C^4_5.2^4=80\)

Bình luận (0)
NH
26 tháng 4 2023 lúc 21:55

Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển

Bình luận (0)
VD
Xem chi tiết
NL
25 tháng 12 2022 lúc 19:20

Số hạng tổng quát của khai triển: \(C_7^k.x^k.2^{7-k}\)

Số hạng chứa \(x^5\Leftrightarrow k=5\)

Hệ số của số hạng đó là: \(C_7^5.2^2=...\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 5 2018 lúc 5:10

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 8 2019 lúc 12:25

Bình luận (0)
HH
Xem chi tiết
VH
Xem chi tiết
NL
11 tháng 8 2020 lúc 12:17

\(=\left(3x^2+1\right)^{10}\left(x+1\right)^{10}\)

Do tất cả các số hạng chứa x trong khai triển \(\left(3x^2+1\right)^{10}\) đều mũ chẵn và số hạng tự do duy nhất bằng 1

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) bằng hệ số của số hạng chứa \(x^5\) trong khai triển \(\left(x+1\right)^{10}\)

Theo khai triển nhị thức Newton thì hệ số này bằng 252

Bình luận (0)
QH
Xem chi tiết
NL
Xem chi tiết
NT
15 tháng 4 2023 lúc 23:28

Hệ số lớn nhất sẽ tương ứng với số hạng đứng chính giữa 

=>Hệ số lớn nhất là \(C^{51}_{101}\)

Bình luận (0)