Violympic toán 9

VH

Tìm hệ số của số hạng chứa \(x^5\) trong khai triển \(\left(3x^3+3x^2+x+1\right)^{10}\) thành đa thức

NL
11 tháng 8 2020 lúc 12:17

\(=\left(3x^2+1\right)^{10}\left(x+1\right)^{10}\)

Do tất cả các số hạng chứa x trong khai triển \(\left(3x^2+1\right)^{10}\) đều mũ chẵn và số hạng tự do duy nhất bằng 1

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) bằng hệ số của số hạng chứa \(x^5\) trong khai triển \(\left(x+1\right)^{10}\)

Theo khai triển nhị thức Newton thì hệ số này bằng 252

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
PP
Xem chi tiết
MD
Xem chi tiết
TT
Xem chi tiết
AJ
Xem chi tiết
HV
Xem chi tiết
DH
Xem chi tiết
NY
Xem chi tiết
HT
Xem chi tiết