Cho số phức z=a+bi(a,b#0) thỏa mãn z + 4 z ¯ = 5 3 - 2 2 i z Tính S = 2 a + b 2 a - b .
A. S = - 2 2 - 3
B. S = 2 2 - 2
C. S = 2 - 2 2
D. S = 2 2 + 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hai số phức:
z = a + b i , z ' = a ' + b ' i ( a , b , a ' , b ' ∈ ℝ ) .
Tìm phần ảo của số phức z z ' .
A. ( a b ' + a ' b ) i
B. a b ' + a ' b
C. a b ' − a ' b
D. a a ' − b b '
Đáp án A.
Có z . z ' = a a ' − b b ' + a b ' + a ' b i .
Vậy phần ảo là: a b ' + b a ' i .
Cho hai số phức z = a + b i , z ' = a ' + b ' i ( a , b , a ' , b ' ∈ ℝ )
Tìm phần ảo của số phức z z ' .
A. ( a b ' + a ' b ) i
B. a b ' + a ' b
C. a b ' - a ' b
D. a a ' - b b '
Đáp án A.
Có .
Vậy phần ảo là (ab'+ba')i.
Cho hai số phức z = a + b i và z ' = a ' + b ' i ( a , b , a ' , b ' ∈ R ) Số phức z z ' có phần thực là
Cho số phức Z thoả mãn (1+2i)z-5= 3i tìm số phức liên hợp z 2/ cho số phức z=a+bi(a, b thuộc R) thoả mãn 3z-5z ngan -6+10i=0 .tính a-b
\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?
Cho số phức z = a + bi . Tìm điều kiện của a và b để số phức z 2 = ( a + bi ) 2 là số thuần ảo
A . a = 2 b .
B . a = 3 b .
C . a = ± b .
D . a ≠ 0 , b ≠ 0 .
Chọn C.
Ta có: z 2 = ( a + bi ) 2 = a 2 - b 2 + 2 abi . Để z 2 là số thuần ảo thì a 2 - b 2 = 0 ⇔ a = ± b .
Cho hai số phức z = a + b i và z ’ = a ’ + b ’ i (a,b,a’,b’ÎR) . Số phức zz’ có phần thực là
A. aa’ + bb’
B. ab’ – a’b
C. aa’ - bb’
D. ab’ + a’b
Mọi người giải giùm em bài này ạ em giải hoài không ra ạ em cảm ơn ạ
Cho số phức $z = a + bi \left(a, b \in mathbb{R}\right)$. Tìm số phức $\overline{z}$ là số phức liên hợp của $z$.
A. $\overline{z} = a-bi$.
B. $\overline{z} =-a+bi$.
C. $\overline{z} = -\left(a-bi\right)$
. D. $\overline{z} = a^2-b^2i$
Cho số phức z = a + b i ; a , b ∈ ℝ . Phần thực của số phức z 2 là:
A. a 2 + b 2
B. b 2 - a 2
C. a 2 - b 2
D. 2ab
Cho số phức z = a + b i ( a , b ∈ R ) . Số phức z 2 có phần thực là
A. 2ab
B. a 2 + b 2
C. a 2 - b 2
D. -2ab
Cho số phức z = a + b i ( a , b ∈ R ) Số phức z 2 có phần ảo là