Cho hai số phức z = a + bi ; a , b ∈ ℝ . Có điểm biểu diễn của số phức z nằm trong dải − 2 ; 2 (hình 1) điều kiện của a và b là: a ≥ 2 b ≥ 2 a ≤ − 2 b ≤ − 2 − 2 < a < 2 , b ∈ ℝ a , b ∈ − 2 ; 2
A. a ≥ 2 b ≥ 2
B. a ≤ − 2 b ≤ − 2
C. − 2 < a < 2 , b ∈ ℝ
D. a , b ∈ − 2 ; 2
Cho số phức z = a+bi(a,b ϵ ℝ) thỏa mãn |z|=5z và z(2+i)(1-2i) là một số thực. Tính giá trị P=|a|+|b|
A.P=8
B.P=4
C.P=5
D. P=7
Cho số phức z thỏa mãn 5 z ¯ + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a + b bằng
A. 13
B. -5
C. 9
D. 5
Số phức z = a + b i a , b ∈ ℝ thỏa mãn z − 2 = z và z + 1 z ¯ − i là số thực. Giá trị của biểu thức S = a+2b bằng bao nhiêu?
A. S = - 1
B. S = 1
C. S = 0
D. S = - 3
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z + 2 + i − z 1 + i = 0 , z > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z + 2 + i − z 1 + i = 0 và z > 1. Tính P = a + b .
A. P = − 1.
B. P = − 5.
C. P = 3.
D. P = 7.
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z - 2 - i = i z ¯ - 2 Khi biểu thức P = z - 3 - i + z + 2 - 3 i đạt giá trị nhỏ nhất thì a-b bằng
A. - 59 8
B. - 5 16
C. - 59 16
D. - 5 8
Cho số phức z = a + b i a , b ∈ ℝ thoả mãn z - 2 i z - 2 là số thuần ảo. Khi số phức z có môđun lớn nhất. Tính giá trị biểu thức P = a + b
A. P = 0 .
B. P = 4 .
C. P = 2 2 + 1 .
D. P = 1 + 3 2 .