Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 2 2018 lúc 16:40

Đáp án D

f ' x < 0 ⇔ x < 0  do đó hàm số nghịch biến trên  − ∞ ; 0

Bình luận (0)
TL
Xem chi tiết
NT
20 tháng 7 2021 lúc 16:32

Bài 1 : làm tương tự với bài 2;3 nhé

Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)

\(\Rightarrow f\left(1\right)=a+b=1\)

\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)

\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)

Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 6 2019 lúc 3:53

Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 9 2017 lúc 2:38

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 9 2019 lúc 7:33

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 11 2019 lúc 8:25

Chọn B 

 

+ Dựa vào  đồ thị hàm số  ta thấy :

  - Hàm  số y= f( x) nghịch biến trên khoảng ( - ∞; 1) và  ( 3; 5) .

  - Hàm số y= f( x) nghịch  biến trên khoảng ( 1 ; 3)   và ( 5 ; + ∞)  

 

 

 

 

 

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 8 2018 lúc 5:54

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 6 2019 lúc 13:09

Bình luận (0)
VC
Xem chi tiết
NL
20 tháng 8 2021 lúc 20:58

\(y'=2f'\left(x\right).f'\left(f\left(x\right)\right)-2f'\left(x\right).f\left(x\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f'\left(f\left(x\right)\right)=f\left(x\right)\end{matrix}\right.\)

Từ đồ thị ta có \(f'\left(x\right)=0\Rightarrow x=x_1\) với \(-4< x_1< 0\)

Xét phương trình \(f'\left(f\left(x\right)\right)=f\left(x\right)\), đặt \(f\left(x\right)=t\Rightarrow f'\left(t\right)=t\)

Vẽ đường thẳng \(y=t\) (màu đỏ) lên cùng đồ thị \(y=f'\left(t\right)\) như hình vẽ:

undefined

Ta thấy 2 đồ thị cắt nhau tại 3 điểm: \(t=\left\{-4;1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}f\left(x\right)=-4\\f\left(x\right)=1\\f\left(x\right)=4\end{matrix}\right.\) (1)

Mặt khác từ đồ thị \(f'\left(x\right)\) và \(f\left(0\right)=-4\) ta được BBT của \(f\left(x\right)\) có dạng:

undefined

Từ đó ta thấy các đường thẳng \(y=k\ge-4\) luôn cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt

\(\Rightarrow\) Hệ (1) có 6 nghiệm phân biệt (trong đó 3 nghiệm nhỏ hơn \(x_1\) và 3 nghiệm lớn hơn \(x_1\))

Từ đó ta có dấu của y' như sau:

undefined

Có 3 lần y' đổi dấu từ dương sang âm nên hàm có 3 cực đại

Bình luận (0)
NT
20 tháng 8 2021 lúc 21:47

Chọn A

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 8 2017 lúc 8:17

Bình luận (0)