Tìm x \(\sqrt{5x^2-20x+20}=2\sqrt{5}\)
\(\sqrt{25x+5}+\sqrt{45}\sqrt{20x+4}-\sqrt{\dfrac{5x+1}{16}}=\dfrac{27\sqrt{5}}{4}\)
tìm x
=>\(\sqrt{5x+1}\left(\sqrt{5}-6\sqrt{5}-\dfrac{1}{4}\right)=\dfrac{27\sqrt{5}}{4}\)
=>căn 5x+1=\(\dfrac{27\sqrt{5}}{28\sqrt{5}-1}\)
=>5x+1=0,96
=>5x=-0,04
=>x=-0,04/5=-0,008
giải pt:
a. \(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
b. \(\sqrt{3x-5}+\sqrt{7-3x}=5x^2-20x+22\)
c. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
giải pt :
1 ) \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
2 ) \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
Gải phương trình \(\sqrt{4x+2}+\sqrt{x^2+5x+6}=\sqrt{5x^2+20x+15}\)
Tìm x, biết:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
b) \(\sqrt{25-20x+4x^2}+2x=5\)
a,\(Đkxđ:x\ge3\)
Ta có:
\(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow|x-3|=3-x\)
\(\Leftrightarrow x-3=\left[{}\begin{matrix}x-3\\3-x\end{matrix}\right.\)
\(TH1:x-3=x-3\Leftrightarrow0x=0\)
\(\Rightarrow\)\(x\in R\) và \(x\ge3\)
\(TH2:x-3=3-x\Leftrightarrow2x=6\Leftrightarrow x=3\)( ko thỏa mãn điều kiện)
vậy \(\left\{x\in R/x\ge3\right\}\)
b, \(Đkxđ:x\le\dfrac{5}{2}\)
Ta có:
\(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=5-2x\\5-2x=2x-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in R\\x=\dfrac{5}{2}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(\left\{x\in R/x\le\dfrac{5}{2}\right\}\)
a)\(\sqrt{4-5x}=12\) tìm x
b)\(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)
c)\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
a) Ta có: \(\sqrt{4-5x}=12\)
\(\Leftrightarrow4-5x=144\)
\(\Leftrightarrow5x=-140\)
hay x=-28
b) Ta có: \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}+10=10+4\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)
\(\Leftrightarrow3x=96\)
hay x=32
c) Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
Giải các phương trình:
a) \(\left(3x-1\right)\left(3x+1\right)=x\left(1+8\sqrt{x+1}\right)\)
b) \(5x^2-5x\sqrt{x^2+x+4}+2x+5=0\)
c) \(9x^2+8x+9=9\left(x+1\right)\sqrt{2x^2+1}\)
d) \(5x^2+2x+2=5x\sqrt{x^2+x+1}\)
e) \(5x^2+20x-12=5\left(x-2\right)\sqrt{3x^2+x}\)
a/ ĐXĐK: ...
\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)
\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))
\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)
Đặt \(\sqrt{x^2+x+1}=a\)
\(\Leftrightarrow3x^2-5ax+2a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(\sqrt{x^2+x+1}=x+1\)
\(\sqrt{4x^2-20x+25}+2x=5\)
\(\sqrt{x^2-2x+1}=4\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)
voi dk \(x\ge-1\) ta co
\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)
b,\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|+2x=5\)
th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)
th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)
\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)
kl \(x\le\frac{5}{2}\)
c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)
d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)
ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
dau = xay ra \(\Leftrightarrow x=-1\)
cho f(x) = \(\sqrt{5x^2+20}+\sqrt{5x^2-32x+64}+\sqrt{5x^2-40x+100}+\sqrt{5x^2-8x+16}\) Tìm giá trị nhỏ nhất của f(x)