Cho m > n. Chứng minh: 4 - 3m < 4 - 3n
A) cho m thuộc n hãy chứng minh 3m +4<3n+4
B) cho a+b≥1/2 chứng minh a²+b²≥1/2
Giúp mình với ạ
Cho m > n, chứng minh:
a, m+2>n+2;
b, -2m<-2n;
c, 2m-5>2n-5
d, 4-3m<4-3n
a.m+2>n+2
Ta có: m >n
=>m+2 > n+2 (cộng hai vế với 2)
do đó m+2>n+2
b, -2m < -2n
Ta có: m > n
=> -2m < -2n (nhân hai vế với -2)
do đó -2m<-2n
c,2m-5>2n-5
Ta có: m>n
=>2m>2n (nhân hai vế với 2)
=>2m-5>2n-5 ( cộng hai vế với -5)
do đó 2m-5>2n-5
d,4-3m<4-3n
Ta có :m>n
=> -3m<-3n (nhân hai vế với -3)
=> 4-3m<4-3n (cộng 2 vế với 4)
cho m > n chứng minh :
a, m + 2 > n + 2 ;
b, 2m - 5 > 2n - 5
c, -2m < - 2n
d, 4 - 3m < 4 - 3n
Đương nhiên là vậy rồi, chứng minh làm gì nữa
mk ko bít làm sorry! ~_~
53466
Since m> n => all of the a, b, c and d are correct (DPCM)
Chứng minh rằng:
a) 165+215⋮66
b) Với mỗi số nguyên dương n:
3m+2 - 2n+4+3n+2n⋮30
a) \(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{14}\cdot2\cdot33⋮66\)
b) \(3^{m+2}-2^{n+4}+3^m+2^n\)
\(=3^m\cdot9+3-2^n\left(2^4-1\right)\)
\(=3^m\cdot10-2^{n-1}\cdot30\)
\(=30\left(3^{m-1}-2^{n-1}\right)⋮30\)
a) \(A=16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33=2^{14}\cdot66⋮66\)
b) Sửa đề
\(B=3^{n+2}-2^{n+4}+3^n+2^n=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)=3^n\cdot10-2^n\cdot15\\ =3^{n-1}\cdot30-2^{n-1}\cdot30=30\left(3^{n-1}-2^{n-1}\right)⋮30\)
(với mọi n nguyên dương)
chứng minh :(2m - 3) (3n - 2) - (3m - 2)(2n - 3) chia hết cho 5 (m, n thuộc Z)
giúp tớ với
( 2m - 3 )( 3n - 2 ) - ( 3m - 2 )( 2n - 3 )
= 6mn - 4m - 9n + 6 - ( 6mn - 9m - 4n + 6 )
= 6mn - 4m - 9n + 6 - 6mn + 9m + 4n - 6
= 5m - 5n
= 5( m - n ) \(⋮\)5 với mọi m, n thuộc Z ( đpcm )
cảm ơn bạn
Chứng minh rằng:(2m-3).(3n-2)-(3m-2).(2n-3) chia hết cho 5 với mọi m,n thuộc Z
Chứng minh rằng với mọi m , n thuộc Z : ( 2m - 3)(3n - 2) - (3m - 2)(2n - 3) chia hết cho 5
Cho m > n, chứng tỏ: 3m + 2 > 3n
Ta có: m > n ⇒ 3m > 3n (3)
2 > 0 ⇒ 3m + 2 > 3m (4)
Từ (3) và (4) suy ra: 3m + 2 > 3n
Cho m>n, chứng tỏ: 3m+2> 3n
m>n
=> 3m>3n
\(\Leftrightarrow\) 3m+2>3n
có m>n
<=> 3m > 3n ( nhân 2 vế với 3 )
có 2>0
<=> 3n+2 > 3n+2
<=> 3m+2 > 3n+2
Vì m>n(GT)
Nên 3m>3n(Nhân 2 vế bất đẳng thức cho cùng 1 sô dương là 3)
Suy ra: 3m+2>3n