Cho M = x 2 + y 2 + x y x 2 − y 2 : x 3 − y 3 x 2 + y 2 − 2 x y và N = x 2 − y 2 x 2 + y 2 : x 2 − 2 x y + y 2 x 4 − y 4 . Khi x + y = 6, hãy so sánh M và N
A. M < N
B. M > N
C. M ≥ N
D. M = N
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
a) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3
b) Cho x-y=m; x^2+y^2=n. Tính x^3-y^3 theo m và n
a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)
b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)
Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).
a) Tìm đa thức \(Q\) sao cho \(Q - P = - 2{x^3}y + 7{x^2}y + 3xy\)
b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
câu 2 này là câu tổ hợp của câu 1 và câu 3 thôi .
a) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow2\left(x-1\right)^2=-\left(x+y\right)^2+3\left(x+y\right)-2\)
\(\Leftrightarrow1\le x+y\le2\)
\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(P_{min}=1\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow\left(x+y\right)^2-3\left(x+y\right)+\dfrac{9}{4}=-2x^2+4x-\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+y-\dfrac{3}{2}\right)^2=-2x^2+4x-\dfrac{7}{4}\ge0\)\(\Leftrightarrow\dfrac{4-\sqrt{2}}{4}\le x\le\dfrac{4+\sqrt{2}}{4}\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\y=\dfrac{2+\sqrt{2}}{4}\end{matrix}\right.\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\y=\dfrac{2-\sqrt{2}}{4}\end{matrix}\right.\)
mk nghỉ đề này không phải của lớp 8 đâu phải không :)
Cho x, y là 2 số nguyên dương mà x^2 + y^2 + 10 chia hết cho xy.
a) C/m x, y là 2 số lẻ và (x,y)=1
b) C/m k=(x^2 + y^2 + 10)/xy chia hết cho 4 và k >=12
a.
Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)
Mà \(\left(x^2+y^2+10\right)⋮xy\) nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
Ta có \(xy⋮4\)
Do đó \(\left(x^2+y^2+10\right)⋮4\).
Mà \(x^2⋮4,y^2⋮4\) nên \(10⋮4\) (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số lẻ.
Đặt \(d=ƯCLN\left(x,y\right)\)
Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)
Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)
Vậy \(ƯCLN\left(x,y\right)=1\)
b. Theo đề suy ra \(kxy=x^2+y^2+10\)
Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)
Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)
Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)
Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)
Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)
Nên \(\left(x^2+y^2+10\right)⋮3\) \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)
=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.
\(\RightarrowƯCLN\left(xy,3\right)=1\), \(x^2\) và \(y^2\) chia cho 3 dư 1.
Do đó \(\left(x^2+y^2+10\right)⋮3\) nên \(kxy⋮3\) mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)
\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)
Mà \(k\in N\)* nên \(k\ge12\)
cho hệ PT \(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=-m^2+6\end{matrix}\right.\)\(\hept{\begin{cases}x+y=m\\x^2+y^2=-m^2+6\end{cases}}\)
( m là tham số )tìm m để hệ có nghiêm (x,y) sao cho P=xy+2(x+y) đạt GTNN. tìm GTNN đó
Ta có:
\(\hept{\begin{cases}x+y=m\\x^2+y^2=-m^2+6\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=m\\\left(x+y\right)^2-2xy=-m^2+6\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=m\\xy=m^2-3\end{cases}}}\)
Suy ra:
\(P=xy+2\left(x+y\right)=m^2-3+2m=\left(m^2+2m+1\right)-4=\left(m+1\right)^2-4\ge-4\)
Vậy GTNN của P là -4 khi m = -1.
1/ a) Tìm m để: (x^2-4x+m) chia hết cho (x-2) b) Tìm số nguyên x để: (x^2-4x+5) chia hết cho (x-2) c) Cho x+y= 2. Tính P=x^3 + y^3 + 6xy d) Cho x+3y= 1. Tính P= (x-2y)^2 + 5y.(y+2x)
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
cho M= x^2/(x+y)(1-y)-y^2/(x+y)(1+x)x^2y^2/(1+x)(1-y)
Rút gọn M
Cho (x;y) là nghiệm của hệ x+y=m+2 và x^2+y^2=-m^2+2m+10
Tìm gtln gtnn của P=xy-3(x+y)
bài1 tìm m để các hàm số
a) y=(m-1)x^2 đông biến khi x>0
b) y=(3-m)x^2 nghịch biến x>0
c) y=(m^2-m)x^2 nghịch biến khi x>0
bài 2/ cho hàm số y=(m^2+1)x^2 (m là tham số ) . hỏi khi x<0 thì hàm số trên đồng biến hay nghịch biến
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
Bài 2
Với x < 0 thì hàm số trên nghịch biến do m^2 + 1 > 0