Parabol y = x 2 + 2 x - 3 có tọa độ đỉnh là:
A. - 2 ; - 3
B. - 1 ; - 2
C. - 1 ; 2
D. - 1 ; - 4
Xác định tọa độ đỉnh P của parabol y=3(x-2)^2+0
Lời giải:
$y=3x^2-12+12$
Tọa độ đỉnh $P$: \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{12}{2.3}, \frac{4.3.12-12^2}{4.3})=(2,0)\)
trong mặt phẳng oxy tìm tọa độ đỉnh của parabol y=x^2-2x-1
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y=ax^2+bx+c\) (với \(a\ne0\)) là một parabol (P):
Có đỉnh S với hoành độ: \(x_S=-\dfrac{b}{2a}\)
Tung độ: \(y_S=-\dfrac{\Delta}{4a}\left(\Delta=b^2-4ac\right)\)
Với hàm số \(y=x^2-2x-1\) ta có: \(a=1;b=-2;c=-1\) thì đỉnh S có toạ độ là:
\(x_S=-\dfrac{b}{2a}=\dfrac{-\left(-2\right)}{2.1}=1\)
\(y_S=-\dfrac{\Delta}{4a}=-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-2\right)^2-4.1.-1}{4.1}=-2\)
Vậy \(S=\left\{1;-2\right\}\)
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{2}{2}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot\left(-1\right)}{4}=-\dfrac{4+4}{4}=-2\end{matrix}\right.\)
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
Trong mặt phẳng tọa độ $O x y$ cho Parabol $(P): y=x^{2}$ và đường thẳng $(d): y=m x+3$ ($m$ là tham số)
a) Tìm tọa độ giao điểm của $(d)$ và $(P)$ khi $m=2$.
b) Tìm $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt có hoành độ $x_{1} ; x_{2}$ thỏa mãn $\frac{1}{x_{1}}+\frac{1}{x_{2}}=\frac{3}{2}$.
a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)
Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)
Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)
b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)
Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)
Vậy \(m=-\frac{9}{2}\)
tìm parabol y=ax2+bx+3 biết rằng parabol đó có trục đối xứng là x=-2 và đỉnh của parabol có tung độ bằng 19.
Lời giải:
Theo bài ra thì tọa độ đỉnh của parabol là $(-2,19)$
Từ hàm $y=ax^2+bx+3=a(x+\frac{b}{2a})^2+3-\frac{b^2}{4a}$ ta có tọa độ đỉnh của parabol là:
$(\frac{-b}{2a}, 3-\frac{b^2}{4a})$
$\Rightarrow \frac{-b}{2a}=-2; 3-\frac{b^2}{4a}=19$
$\Rightarrow a=-4; b=-16$
Câu 1: Cho parabol (P)\(y=x^2+2x-m+1\)
Tìm m để (P) cắt đường thẳng \(d: y=x+1\) tại 2 điểm A,B sao cho AB=8
Câu 2: Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có 3 đỉnh A(4;3), B(2;7), C(-3;-8)
a) Tính độ dài đường trung tuyến AM của tam giác ABC
b) Tìm tọa độ điểm D thỏa mãn \(\overrightarrow{AD}-2\overrightarrow{BD}+4\overrightarrow{CD}=\overrightarrow{0}\)
c) Tìm tọa độ chân đường cao A' kẻ từ đỉnh A xuống chân BC
Phương trình hoành độ giao điểm:
\(x^2+2x-m+1=x+1\)
\(\Leftrightarrow x^2+x-m=0\left(1\right)\)
\(\left(d\right),\left(P\right)\) cắt nhau tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=4m+1>0\Leftrightarrow m>-\dfrac{1}{4}\)
Phương trình \(\left(1\right)\) có hai nghiệm phân biệt \(x=\dfrac{-1\pm\sqrt{4m+1}}{2}\)
\(x=\dfrac{-1+\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1+\sqrt{4m+1}}{2}\Rightarrow A\left(\dfrac{-1+\sqrt{4m+1}}{2};\dfrac{1+\sqrt{4m+1}}{2}\right)\)
\(x=\dfrac{-1-\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1-\sqrt{4m+1}}{2}\Rightarrow B\left(\dfrac{-1-\sqrt{4m+1}}{2};\dfrac{1-\sqrt{4m+1}}{2}\right)\)
\(AB=8\Leftrightarrow\sqrt{8m+2}=8\Leftrightarrow m=\dfrac{31}{4}\left(tm\right)\)
2.
a, \(AB=2\sqrt{5},BC=5\sqrt{10},CA=\sqrt{170}\)
\(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}=\dfrac{65}{2}\Rightarrow AM=\dfrac{\sqrt{130}}{2}\)
b, \(\left\{{}\begin{matrix}x_D-4-2\left(x_D-2\right)+4\left(x_D+3\right)=0\\y_D-3-2\left(y_D-7\right)+4\left(y_D+8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-4\\y_D=-\dfrac{14}{3}\end{matrix}\right.\)
\(\Rightarrow D\left(-4;-\dfrac{14}{3}\right)\)
c, \(\left\{{}\begin{matrix}\overrightarrow{AA'}=\left(x_{A'}-4;y_{A'}-3\right)\\\overrightarrow{BC}=\left(-5;-15\right)\\\overrightarrow{BA'}=\left(x_{A'}-2;y_{A'}-7\right)\end{matrix}\right.\)
\(AA'\perp BC\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AA'}.\overrightarrow{BC}=0\left(1\right)\\\overrightarrow{BA'}=k\overrightarrow{BC}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-5\left(x_{A'}-4\right)-15\left(y_{A'}-3\right)=0\Leftrightarrow x_{A'}+3y_{A'}=13\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x_{A'}-2=-5k\\y_{A'}-7=-15k\end{matrix}\right.\Leftrightarrow3x_{A'}-y_{A'}=-1\)
\(\left\{{}\begin{matrix}x_{A'}+3y_{A'}=13\\3x_{A'}-y_{A'}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_{A'}=1\\y_{A'}=4\end{matrix}\right.\Rightarrow A'\left(1;4\right)\)
Cho hàm số y=x²-2-3x,đồ thị là parabol(P) a/Xác định tọa độ đỉnh,trục đối xứng.Lập bảng biến thiên và vẽ đồ thị b/gọi A là điểm thuộc(P) và có hoành độ bằng 5. Tìm phương trình đường thẳng (d) đi qua 2 điểm A,I
a: \(\left\{{}\begin{matrix}x_I=\dfrac{3}{2\cdot1}=\dfrac{3}{2}\\y_I=-\dfrac{\left(-3\right)^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{17}{4}\end{matrix}\right.\)
Tọa độ giao điểm của parabol (P1) : \(y=2x^2+2x+3\) với parabol (P2) : \(y=x^2+6x\) là ?
Pt hoành độ giao điểm của (P1) và (P2) là:
\(2x^2+2x+3=x^2+6x\)
\(\Rightarrow x^2-4x+3=0\)
=> (x - 1).(x - 3) = 0
\(\Rightarrow\left[{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y_1=7\\y_2=27\end{matrix}\right.\)
Vậy 2 parabol này cắt nhau tại 2 điểm (1;7);(3;27)
Xác định trục đối xứng, tọa độ đỉnh , các giao điểm với trục tung và trục hoành của các parabol :
a, y= 2x2-x-2
b,y= -3x2-6x+4
c, y=-2x2-x+2
a: Trục đối xứng là x=-(-1)/4=1/4
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot2\cdot\left(-2\right)}{4\cdot2}=-\dfrac{17}{8}\end{matrix}\right.\)
Thay y=0 vào (P), ta được:
2x^2-x-2=0
=>\(x=\dfrac{1\pm\sqrt{17}}{4}\)
thay x=0 vào (P), ta được:
y=2*0^2-0-2=-2
b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-6\right)}{2\cdot\left(-3\right)}=\dfrac{6}{-6}=-1\\y=-\dfrac{\left(-6\right)^2-4\cdot\left(-3\right)\cdot4}{4\cdot\left(-3\right)}=7\end{matrix}\right.\)
=>Trục đối xứng là x=-1
Thay y=0 vào (P), ta được:
-3x^2-6x+4=0
=>3x^2+6x-4=0
=>\(x=\dfrac{-3\pm\sqrt{21}}{3}\)
Thay x=0 vào (P), ta được:
y=-3*0^2-6*0+4=4
c: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-1\right)}{2\cdot\left(-2\right)}=\dfrac{1}{-4}=\dfrac{-1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot\left(-2\right)\cdot2}{4\cdot\left(-2\right)}=\dfrac{17}{8}\end{matrix}\right.\)
=>Trục đối xứng là x=-1/4
Thay y=0 vào (P), ta được:
-2x^2-x+2=0
=>2x^2+x-2=0
=>\(x=\dfrac{-1\pm\sqrt{17}}{4}\)
Thay x=0 vào (P), ta được:
y=-2*0^2-0+2=2
Trong mặt phẳng với hệ tọa độ Oxy cho parabol (p):y=x2 và đường thẳng d:y=(m-1)x+2
1.Tìm m để đường thẳng (d) đi qua tiếp điểm Q của (p) và đường thẳng y=6x-9
2.Tồn tại 1 hình vuông (V) có 1 đỉnh là gốc tọa độ O, một đỉnh nằm trên trục tung và hai đỉnh còn lại nằm trên parabol (p) tính chu vi của hình vuông (V)