Cho hàm số y = ( 2 – 3 m ) x – 6 . Tìm m để đồ thị hàm số đi qua điểm A (−3; 6)
A. m = 3
B. m = 4
C. m = 9
D. m = 2
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
# Bài 24. Cho hai đường thẳng (D): y = (m − 2)x + 1& (D0 ) : y = m2 x − 2x + m. 1) Tìm m để (D) là hàm số bậc nhất? Hàm số đồng biến? Hàm số nghịch biến? 2) Tìm m biết (D) // (D’). 3) Với m tìm được ở câu 2 hãy a) Vẽ đồ thị (D); b) Tính góc tạo bởi đường thẳng (D) và trục Ox; c) Tính chu vi và diện tích tam giác được tạo bởi đường thẳng (D), Ox, Oy; d) Tính khoảng cách từ gốc tọa độ O đến đường thẳng (D). 4) Cho hai đường thẳng (d1) y = 2x−8 và (d2) y = −x+1. Tìm m để đường thẳng (D),(d1),(d2) đồng quy. 5) Tìm m để (D) và (D’) cắt nhau tại một điểm nằm trên trục hoành. 6) Chứng minh rằng đường thẳng (D) luôn đi qua một điểm cố định khi m thay đổi. 7) Tìm m sao cho đường thẳng (D) tạo với hai trục Ox, Oy một tam giác có diện tích bằng 2. 8) Tìm m sao cho khoảng cách từ gốc tọa độ O đến đường thẳng (D) đạt giá trị lớn nhất.
1: (D): y=(m-2)x+1
(D'): \(y=m^2x-2x+m=x\left(m^2-2\right)+m\)
Để (D) là hàm số bậc nhất thì m-2<>0
=>m<>2
Để (D): y=(m-2)x+1 đồng biến trên R thì m-2>0
=>m>2
Để (D): y=(m-2)x+1 nghịch biến trên R thì m-2<0
=>m<2
2: Để (D)//(D') thì \(\left\{{}\begin{matrix}m^2-2=m-2\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m< >1\end{matrix}\right.\)
=>m=0
3:
a: Khi m=0 thì (D): y=(0-2)x+1=-x+1
b: Gọi \(\alpha\) là góc tạo bởi (D) với trục Ox
Ta có: a=-1
nên \(tan\left(180^0-\alpha\right)=-1\)
=>\(180-\alpha=135^0\)
=>\(\alpha=45^0\)
4:
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-8=-x+1\\y=2x-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=9\\y=2x-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\cdot3-8=-2\end{matrix}\right.\)
Thay x=3 và y=-2 vào (D), ta được:
\(3\left(m-2\right)+1=-2\)
=>3(m-2)=-3
=>m-2=-1
=>m=1
5: Để (D) cắt (D') tại một điểm trên trục hoành thì
\(\left\{{}\begin{matrix}m-2< >m^2-2\\-\dfrac{1}{m-2}=\dfrac{-m}{m^2-2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m\ne0\\\dfrac{1}{m-2}=\dfrac{m}{m^2-2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)\ne0\\m^2-2=m^2-2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\notin\left\{0;1\right\}\\-2m=-2\end{matrix}\right.\)
=>\(m\in\varnothing\)
6: (D): y=(m-2)x+1
=>y=mx-2x+1
Điểm mà (D) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)
12, Cho hàm số y=x-1/x^2+mx+4. Tìm m để đồ thị hàm số có 2 đường tiện cận 13, tìm m để(C):y= mx^3-x^2-2x+8m cắt Ox tại 3 điểm phân biệt có Hoành độ âm 14,cho (C) :y= x^3+(m+2) x+1 d:y= 2x-1 Tìm m để d cắt C tại 1 điểm duy nhất có Hoành độ dương 15, tìm m để phương trình -x^4+2x^2+3x+2m=0 có 3 nghiệm phân biệt
Cho hàm số y= ( \(\dfrac{-3}{2}\) m +5 )x -6
a) tìm m để hàm số trên đồng biến
b) Vẽ đồ thị khi m=2
\(a,HSĐB\Leftrightarrow-\dfrac{3}{2}m+5>0\Leftrightarrow m>\dfrac{10}{3}\\ b,m=2\Rightarrow y=2x-6\\ Chọn.3.điểm:A\left(0;-6\right);B\left(2;-2\right);C\left(3;0\right)\)
Anh chọn điểm em tự vẽ đồ thị hi
a) Hàm số đồng biến khi:
-3m/2 + 5 > 0
⇔ -3m/2 > -5
⇔ m < 10/3
b) m = 2
⇔ y = 2x - 6
Cho x = 0 thì y = -6 ⇒ A(0; -6)
y = 0 thì x = 3 ⇒ B(3; 0)
*) Đồ thị:
Bài 1: Cho hàm số\(y=x\sqrt{m-1}-\dfrac{3}{2}\).Tìm giá trị của m sao cho hàm số trên là hàm số bậc nhất
Bài 2: Với giá trị nào của k thì:
a)Hàm số \(y=\left(k^2-5k-6\right)x-13\) đồng biến?
b)Hàm số \(y=\left(2k^2+3k-2\right)x+3\) nghịch biến?
Bài 3: Cho hai hàm số bậc nhất y = 2x + k và y = (2m + 1)x + 2k - 3. Tìm điều kiện đối với m và k để hai đồ thị hàm số là:
a)Hai đường thẳng cắt nhau
b)Hai đường thẳng song song với nhau
c)Hai đường thẳng trùng nhau
Bài 4: Cho đường thẳng (d): y = (m - 3)x + 1 - m. Xác định m trong các trường hợp sau đây:
a) (d) cắt trục Ox tại điểm A có hoành độ x = 2
b) (d) cắt trục tung Ox tại điểm B có tung độ y = -3
c) (d) đi qua điểm C(-1 ; 4)
Cho hàm số y = x 3 - 6 x 2 + 3 ( m + 2 ) x - m - 6 . Tìm tất cả các giá trị thực của m để hàm số có 2 cực trị cùng dấu
A. - 23 4 < m < 2 .
B. - 15 4 < m < 2 .
C. - 21 4 < m < 2 .
D. - 17 4 < m < 2 .
Chọn D
Hàm số có 2 điểm cực trị x 1 , x 2
Chia y cho y’ ta được :
Điểm cực trị tương ứng :
Với x 1 + x 2 = 4 x 1 x 2 = m + 2 nên y 1 y 2 = ( m - 2 ) 2 ( 4 m + 17 )
Hai cực trị cùng dấu ⇔ y 1 y 2 > 0
Kết hợp đk : - 17 4 < m < 2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến trên R thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số, ta được:
m+3=5
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2