Cho biểu thức P = 4 x 2 + x + 8 x 4 - x : x - 1 x - 2 x - 2 x với x ≥ 0;x ≠ 4; x ≠ 9.
A. P = 4 x x - 3
B. P = 4 x x + 3
C. P = x x - 3
D. P = - 4 x x - 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Cho biểu thức P = √x √x x-4 √x−2+√x+2) 2√x (với x > 0 và x ≠ 4) a) Rút gọn biểu thức P b) Tìm x để P = 3 Cho biểu thức P = √x √x x-25 + √x-5 √x+5) 2√x (với x > 0 và x ≠ 25) a) Rút gọn biểu thức P b) Tìm x để P = 2
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
Cho biểu thức P = (2/x+2 - 4/x^2+4x+4) : (2/x^2-4 + 1/2-x)
rút gọn biểu thức trên
Cho biểu thức \(P=\left(\dfrac{x}{x-2}-\dfrac{3+x}{x+2}\right):\dfrac{x+6}{x^2-4x+4}\)a) Tìm điều kiện xác định của biểu thức Pb) Rút gọn biểu thức Pc) Tính giá trị của biểu thức P tại x = -4 và tại x = 2
Cho biểu thức : \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\) và \(Q=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\) với x ≥ 0; x ≠ 4; x ≠ 9
a, Tính giá trị biểu thức Q khi x = 64
b, Chứng minh P = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c, Cho biểu thức K = Q.(P-1). Tìm số tự nhiên m nhỏ nhất để phương trình K = m + 1 có nghiệm
a) Thay x=64 vào Q ta có:
\(Q=\dfrac{\sqrt{64}-2}{\sqrt{64}-3}=\dfrac{8-2}{8-3}=\dfrac{6}{5}\)
b) \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)
\(P=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}-2}\left(dpcm\right)\)
cho biểu thức A=(x/x-2+12/x^2-4-x/x+2):4/x-2 với x≠2 và x ≠-2
a) rút gọn biểu thức A
b) tính giá trị biểu thức A tại x=-1
c) tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo).
\(A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\left(x\ne2;x\ne-2\right)\)
\(a,A=\left(\dfrac{x}{x-2}+\dfrac{12}{x^2-4}-\dfrac{x}{x+2}\right):\dfrac{4}{x-2}\)
\(=\left[\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)
\(=\left[\dfrac{x^2+2x+12-x^2+2x}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x-2}\)
\(=\dfrac{4x+12}{\left(x-2\right)\left(x+2\right)}:\dfrac{4}{x-2}\)
\(=\dfrac{4\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{x-2}{4}\)
\(=\dfrac{x+3}{x+2}\)
\(b,x=-1\Rightarrow A=\dfrac{\left(-1\right)+3}{\left(-1\right)+2}=2\)
\(c,A=\dfrac{x+3}{x+2}=\dfrac{x+2+1}{x+2}=1+\dfrac{1}{x+2}\)
\(A\in Z\Leftrightarrow x+2\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{-1;-3\right\}\) (thỏa mãn điều kiện)
Cho biểu thức P = (x/(x - 2) - (x - 2)/(x + 2)) / (1/(x ^ 2 - 4)) a) Tìm điều kiện của x để biểu thức P được xác định. b) Rút gọn biểu thức P. c) Tìm x để P = 0
\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}\)
a)
Để giá trị của biểu thức P được xác định, thì :
\(\left[{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-2\\x\ne-2;2\end{matrix}\right.\)
Vậy ĐKXĐ của biểu thức P là : \(x\ne\left\{2;-2\right\}\)
b)
\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}=\left(\dfrac{x}{x-2}-\dfrac{x-2}{x+2}\right):\dfrac{1}{x^2-4}=\left(\dfrac{x\left(x+2\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2-4}{1}\)
\(=\dfrac{x^2+2x-x^2+2x-4}{x^2-4}.\dfrac{x^2-4}{1}=\dfrac{4x-4}{x^2-4}.\dfrac{x^2-4}{1}=4x-4\)
c)
Để :
\(P=0\Rightarrow4x-4=0\)
\(\Rightarrow4\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Vậy.....
Cho biểu thức: A=\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A khi x = -2 và x = 4.
c) Tìm x biết A = 3.
d) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
Cho biểu thức A = 2√x /√x - 2 và B = x/x-4 + 1/√x + 2 với x>0 , x khác 4
a, Tính giá trị của biểu thức A khi x = 9
b, Rút gọn biểu thức B
c, Tìm x nguyên để biểu thức A/B có giá trị là số nguyên
Cho biểu thức: A=(x-2)(x+2)-(x-1)(x^2-2x+1)-x^2(4-x)
a.Rút gọn biểu thức.
b.Tìm giá trị của x để biểu thức A có giá trị bằng 0.
a) Đề phải là: \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2+2x+1\right)-x^2\left(4-x\right)\) chứ bạn
\(\Rightarrow A=x^2-2^2-\left(x^3-1\right)-4x^2+x^3\)
\(=x^2-4-x^3+1-4x^2+x^3\)
\(=-3x^2-3=-3\left(x^2+1\right)\)
b) A = 0 \(\Leftrightarrow-3\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
Vì \(x^2\ge0\left(\forall x\right)\) \(\Rightarrow x\in\varnothing\)
Vậy x vô nghiệm nếu A có giá trị bằng 0
P/s: không chắc lắm
a) \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2-2x+1\right)-x^2\left(4-x\right)\)
=> \(A=x^2-4-\left(x-1\right)^3-4x^2+x^3\)
=> \(A=x^2-4-x^3+3x^2-3x+1-4x^2+x^3\)
=> \(A=-3x-3\)
b) Cho A=0
=> \(A=-3x-3=0\)
=> \(-3x=3\)
=> \(x=-1\)