Những câu hỏi liên quan
PB
Xem chi tiết
CT
7 tháng 12 2017 lúc 10:07

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Gọi I, K lần lượt là trung điểm của cạnh AB và CD

Qua K kẻ đường thẳng d // AB, trên d lấy A', B' sao cho K là trung điểm của A'B' và

KA' = IA

* Xét tam giác CKB’ và DKA’ có:

KC= KD ( giả thiết)

KB’= KA’( cách dựng)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11 ( hai góc đối đỉnh )

=> ∆ CKB’ = ∆ DKA’ ( c.g.c)

=> B’C = A’D

*Xét tứ giác IBB’K có IB= KB’ và IB // KB’ ( cách dựng)

=> Tứ giác IBB’K là hình bình hành

=> BB’ // IK (1)

Chứng minh tương tự, ta có: AA’// IK (2)

Từ (1) và (2) suy ra: BB’// IK// AA’ (*)

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Lại có:IK ⊥ CK

=> IK ⊥ (CKB') (**)

Từ (*) và (**) suy ra BB' ⊥ (CKB') ; AA' ⊥ (CKB')

⇒ BB' ⊥ B'C; AA' ⊥ A'D

* Xét hai tam giác vuông BCB’ và ADA’ có:

BB’ = AA’ (= IK)

CB’ = A’D (chứng minh trên)

=> ∆ BCB’ = ∆ ADA’ ( cạnh huyền –cạnh góc vuông)

=> BC= AD.

* Chứng minh tương tự, AC = BD

Bình luận (0)
SK
Xem chi tiết
QD
31 tháng 3 2017 lúc 17:14

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Bình luận (0)
YD
Xem chi tiết
YD
26 tháng 10 2019 lúc 21:13

cần gấp lắm hộ mình

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
AT
23 tháng 5 2017 lúc 15:16

AB ⊥ CD =>

AC ⊥ DB => => => AD ⊥ BC.

Bình luận (0)
OM
Xem chi tiết
H24
20 tháng 7 2019 lúc 16:21

A B C D C D

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 6 2018 lúc 8:38

Ta có:  A B → . C D →   =   A C → . B D →   =   A D → . C B →   =   0

⇒ A B → ( A D →   -   A C → )   =   A C → ( A D →   -   A B →   )   =   A D → ( A B →   -   A C → )   =   0

A B → . A C →   =   A C → . A D →   =   A B → . A D →

Đáp án C

Bình luận (0)
PD
Xem chi tiết
DT
20 tháng 9 2016 lúc 19:34

(Vẽ hình: A là đỉnh của tứ diện, BCD là đáy của tứ diện) 
+ Trên mặt phẳng đáy BCD kẻ các đường cao của tam giác BCD là BE, CF, DK.Ba đường cao gặp nhau tại H. 
+ Xét mặt phẳng ABE 
CD vuông góc BE 
CD vuông góc AB 
=> CD vuông góc với mặt phẳng ABE => CD vuông góc với AH (1) 
+ Xét mặt phẳng ACF 
BD vuông góc AC 
BD vuông góc CF 
=> BD vuông góc với mặt phẳng ACF => BD vuông góc với AH (2) 
+ Từ (1) và (2) => AH vuông góc BCD 
=> AH vuông góc với BC 
Mà BC vuông góc với DK 
=> BC vuông góc với mp ADK => BC vuông góc với AD 

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết