Cho tứ diện ABCD có ba cặp cạnh đối diện bằng nhau là AB = CD, AC = BD, AD = BC. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh \(MN\perp AB\) và \(MN\perp CD\). Mặt phẳng (CD) có vuông góc với mặt phẳng (ABN) không ? Vì sao ?
Hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Chứng minh rằng \(AC\perp B'D',AB'\perp CD',AD'\perp CB'\). Khi nào mặt phẳng (AA'C'C) vuông góc với mặt phẳng (BB'D'D) ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. SA \(\perp\) (ABCD) và SA=AB=a. Gọi M là trung điểm của SC. Chứng minh:
a, BC \(\perp\) (SAB) , (SAB) \(\perp\) (SBC)
b, (SCD) \(\perp\) (ABM)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. SA \(\perp\) (ABCD) và SA=AB=a. Gọi M là trung điểm của SC. Chứng minh:
a, BC \(\perp\) (SAB) , (SAB) \(\perp\) (SBC)
b, (SCD) \(\perp\) (ABM)
Cho hình chóp S.ABCD có \(SA\perp\left(ABCD\right)\), đáy ABCD là hình vuông cạnh 2a, SA= \(2a\sqrt{3}\) .
1. Chứng minh \(\left(SAC\right)\perp\left(SBD\right)\)
2. Gọi I là trung điểm của AD, mặt phẳng (P) qua I và vuông góc với SD. Xác định và tính thiết diện của hình chóp cắt bởi mặt phẳng (P).
Help me!!!
Cho hình chóp tam giác đều S.ABC có SH là đường cao. Chứng minh \(SA\perp BC\) và \(SB\perp AC\) ?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D. SA vuông góc (ABCD), AB=2a, AD=DC=a, SA=a√2. khẳng định nào sau đây là sai?
A. (SAB)⊥(ABCD)
B. (SAC)⊥(ABCD)
C. BC⊥SC
D. (SDC)⊥(ABCD)
Tứ diện S.ABC có SA vuông góc với mặt phửng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng :
a) AH, SK và BC đồng quy
b) SC vuông góc với mặt phẳng (BHK) và \(\left(SAC\right)\perp\left(BHK\right)\)
c) HK vuông góc với mặt phẳng (SBC) và \(\left(SBC\right)\perp\left(BHK\right)\)
Bài 1. [ĐVH]: Cho hình chóp S.ABCD có các mặt bên SAB và SAD cùng vuông góc với (ABCD). Biết
ABCD là hình vuông và SA = AB. Gọi M là trung điểm của SC. Chứng minh rằng
a) (SAC) ⊥ (SBD). b) (SAD) ⊥ (SCD). c) (SCD) ⊥ (ABM).