Những câu hỏi liên quan
TT
Xem chi tiết
AH
5 tháng 1 2022 lúc 21:10

Lời giải:
Parabol đi qua $A(2;19)$ nên $y_A=3x_A^2+bx_A+c$ hay $19=12+2b+c$

$\Rightarrow 2b+c=7(1)$

$x=\frac{-2}{3}$ là trục đối xứng 

$\Leftrightarrow \frac{-b}{2.3}=\frac{-2}{3}$

$\Rightarrow b=4(2)$

Từ $(1); (2)\Rightarrow c=-1$

Vậy parabol có pt $y=3x^2+4x-1$

Bình luận (0)
NT
5 tháng 1 2022 lúc 21:07

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{6}=\dfrac{-2}{3}\\12+2b+c=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-1\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 4 2019 lúc 12:24

Bình luận (0)
LT
Xem chi tiết
SK
Xem chi tiết
DN
4 tháng 4 2017 lúc 17:09

Bài giải:

a) Theo hình vẽ, ta lấy điểm A thuộc đồ thị có tọa độ là x = -2, y = 2. Khi đó ta được:

2 = a . (-2)2 suy ra a =

b) Đồ thị có hàm số là y = x2 . Tung độ của điểm thuộc parabol có hoành độ x = -3 là y = (-3)2 suy ra y = .

c) Các điểm thuộc parabol có tung độ là 8 là:

8 = x2 ⇔ x2 = 16 ⇔ x = ± 4

Ta được hai điểm và tọa độ của hai điểm đó là M(4; 8) và M'(-4; 8).



Bình luận (0)
HT
Xem chi tiết
MH
Xem chi tiết
MK
Xem chi tiết
HA
23 tháng 10 2020 lúc 19:52

parabol y= ax2+bx+c đi qua A(2,-7)

\(\Rightarrow-7=a.2^2+b.2+c\)

\(\Rightarrow-7=4a+2b+c\)

\(\Rightarrow4a+2b+c=-7\)(1)

parabol y=ax2+bx+c đi qua B (-5,0)

\(\Rightarrow0=a\left(-5\right)^2+b.\left(-5\right)+c\)

\(\Rightarrow0=25a-5b+c\)

\(\Rightarrow25a-5b+c=0\)(2)

parabol có trục đối cứng là x=2 nên ta có

\(\frac{-b}{2a}=2\Leftrightarrow-b=4a\Leftrightarrow4a+b=0\left(3\right)\)

từ (1) ,(2) và (3) ta có hệ phương trình

\(\left\{{}\begin{matrix}4a+2b+c=-7\\25a-5b+c=0\\4a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{7}\\b=\frac{-4}{7}\\c=\frac{-45}{7}\end{matrix}\right.\)

đây là theo cách mình làm thôi k hắc là đúng hya sai đâu cho dù sai bạn cũng dựa vào cái kiểu này mà tính nhé

Bình luận (0)
 Khách vãng lai đã xóa
MK
23 tháng 10 2020 lúc 19:39

nhận đường thẳng x= 2 là trục đối xứng nha

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LT
Xem chi tiết
LD
11 tháng 3 2019 lúc 12:17

1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)

\(\Rightarrow4=1^2=1\) ( vô lí )

=> A ( \(1;4\) ) không thuộc đồ thị hàm số (P)

2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k

=> 4 = k . 1

=> k = 4

=> Phương trình đường thẳng (d) là

y = 4x

a ) Với k = 2 , ta có (d) : y= 2x

Phương trình hoành độ giao điểm của (d) và (P) là

\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2x=0\\x=2\Rightarrow y=2x=4\end{matrix}\right.\)

Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )

b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ

(P) y = \(x^2\) luôn đi qua gốc tọa độ

=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )

Bình luận (0)
H24
7 tháng 11 2019 lúc 18:47

1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)

⇒4=12=1⇒4=12=1 ( vô lí )

=> A ( 1;41;4 ) không thuộc đồ thị hàm số (P)

2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k

=> 4 = k . 1

=> k = 4

=> Phương trình đường thẳng (d) là

y = 4x

a ) Với k = 2 , ta có (d) : y= 2x

Phương trình hoành độ giao điểm của (d) và (P) là

x2=2x⇒x2−2x=0⇒x(x−2)=0x2=2x⇒x2−2x=0⇒x(x−2)=0

⇒[x=0⇒y=2x=0x=2⇒y=2x=4⇒[x=0⇒y=2x=0x=2⇒y=2x=4

Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )

b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ

(P) y = x2x2 luôn đi qua gốc tọa độ

=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 11 2019 lúc 18:48

1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)

⇒4=12=1⇒4=12=1 ( vô lí )

=> A ( 1;41;4 ) không thuộc đồ thị hàm số (P)

2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k

=> 4 = k . 1

=> k = 4

=> Phương trình đường thẳng (d) là

y = 4x

a ) Với k = 2 , ta có (d) : y= 2x

Phương trình hoành độ giao điểm của (d) và (P) là

x2=2x⇒x2−2x=0⇒x(x−2)=0x2=2x⇒x2−2x=0⇒x(x−2)=0

⇒[x=0⇒y=2x=0x=2⇒y=2x=4⇒[x=0⇒y=2x=0x=2⇒y=2x=4

Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )

b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ

(P) y = x2x2 luôn đi qua gốc tọa độ

=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )

Đúng 1 Bình luận Câu trả lời được cộng đồng lựa chọn Báo cáo sai phạ
Bình luận (0)
 Khách vãng lai đã xóa