Giá trị của m để hệ phương trình m x + ( m - 2 ) y = m ( m + 1 ) x + m y = 2 có nghiệm duy nhất là:
Cho hệ phương trình ( x+y = 2 mx−y = m với m là tham số.
a) Giải hệ phương trình khi m = −2.
b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) sao cho 3x−y = −10.
c) Tìm giá trị nguyên của m để hệ phương trình có nghiệm (x; y) mà x, y là những số nguyên
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....
Cho hệ phương trình \(\left\{{}\begin{matrix}2x+y=3m-5\\x-y=2\end{matrix}\right.\)(m là tham số)
a, giải hệ phương trình với m=2
b, gọi nghiệm của hệ là (x;y), tìm giá trị của m để x2+y2 đạt giá trị nhỏ nhất
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)
Tìm các giá trị của m để hệ phương trình có nghiệm thoả mãn điều kiện: \(S=x+y\) đạt giá trị lớn nhất
Cho hệ phương trình mx+2y=m+2 (2m-1)x+(m + 1)y = 2(m + 1)a) Giải hệ phương trình với m = 3 ? b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất , vô số nhiệm
a: \(\left\{{}\begin{matrix}mx+2y=m+2\\\left(2m-1\right)x+\left(m+1\right)y=2\left(m+1\right)\end{matrix}\right.\)
Khi m=3 thì hệ sẽ là:
3x+2y=5 và 5x+4y=8
=>x=2 và y=-1/2
b: Hệ có nghiệm duy nhất thì \(\dfrac{m}{2m-1}< >\dfrac{2}{m+1}\)
=>m^2+m<>4m-2
=>m^2-3m+2<>0
=>m<>1 và m<>2
hệ có vô số nghiệm thì \(\dfrac{m}{2m-1}=\dfrac{2}{m+1}=\dfrac{2}{2\left(m+1\right)}=\dfrac{1}{m+1}\)
=>m/2m-1=2/m+1 và 2/m+1=1/m+1(vô lý)
=>Ko có m thỏa mãn
Để hệ vô nghiệm thì m/2m-1=2/m+1<>1/m+1
=>m=2 hoặc m=1
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Bài : Cho hệ phương trình (m + 1)x - y = m + 1 và x + (m -1)y = 2 ( Với m là tham số )
a: Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x - 2y = 2
b: Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x:y) vơi x,y có giá trị nguyên
khó quá nhờ
Cho hệ phương trình: m x − y = 2 3 x + m y = 5 ( m ≠ 0 ) . Giá trị của m để hệ phương trình có nghiệm duy nhất thỏa mãn x + y < 1 là:
A. m > 7 + 33 2 m < 7 − 33 2
B. m > − 7 + 33 2 m < − 7 − 33 2
C. − 7 − 33 2 < m < − 7 + 33 2
D. 7 − 33 2 < m < 7 + 33 2
Ta có: D = m − 1 3 m = m 2 + 3 ; D x = 2 − 1 5 m = 2 m + 5 ; D y = m 2 3 5 = 5 m − 6
Vì m 2 + 3 ≠ 0 , ∀ m nên hệ phương trình luôn có nghiệm duy nhất x = D x D = 2 m + 5 m 2 + 3 y = D y D = 5 m − 6 m 2 + 3
Theo giả thiết, ta có:
x + y < 1 ⇔ 2 m + 5 m 2 + 3 + 5 m − 6 m 2 + 3 < 1 ⇔ 7 m − 1 m 2 + 3 < 1
⇔ 7 m − 1 < m 2 + 3 ⇔ m 2 − 7 m + 4 > 0 ⇔ m > 7 + 33 2 m < 7 − 33 2
Đáp án cần chọn là: A
cho hệ phương trình (m - 1)x + y = m
x + ( m - 1)y = 2
a) giải hệ pt khi m = 3
b) tìm giá trị của m thỏa mãn \(2x^2 - 7y = 1 \)
c) tìm các giá trị của m để biểu thức \(\dfrac{2x-3y}{x+y}\) nhận giá trị nguyên
Thao m =3 và HPT ta có:
\(\left\{{}\begin{matrix}\left(3-1\right)x+y=3\\x+\left(3-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\x+2y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=6\\3x=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy với m=3 thì HPT có nghiệm (x;y) = (\(\dfrac{4}{3};\dfrac{1}{3}\))
a) Thay m=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=3\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\2x+4y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-1\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\2x=3-y=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2-\left(m-1\right)y\\\left(m-1\right)\left(2-\left(m-1\right)y\right)+y=m\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2-my+y\\\left(m-1\right)\left(2-my+y\right)+y=m\left(1\right)\end{matrix}\right.\)
Từ (1) ta có:
\(\left(m-1\right)\left(2-my+y\right)=y=m\)
⇔\(2m-m^2y+my-2+my-y+y=m\)
⇔\(-m^2y+2my=-2m+2+m\)
⇔\(my\left(-m+2\right)=-2m+2+m\) (2)
Trường hợp 1:
\(-m+2=0\)
⇔m= \(\mp\)2
*Thay m=2 vào (2) ta có: 0y=0 ⇒m=2 (chọn)
*Thay m=-2 và (2) ta có: 0y= -4 ⇒m= -2 (loại)
Trường hợp 2:
-m+2 \(\ne0\)
⇔m\(\ne\) 2
⇒HPT có nghiệm duy nhất:
\(my=\dfrac{-2m+2+m}{-m+2}\)
⇒\(y=\dfrac{-2m+2+m}{-m+2}.\dfrac{1}{m}\)
⇒\(y=\dfrac{-2m+2+m}{-m^2+2m}\)
⇒\(x=2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\)
Theo bài ra ta có:
\(2x^2-7y=1\)
⇔\(2.\left(2-m.\dfrac{-2m+2+m}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-7\left(\dfrac{-2m+2+m}{-m^2+2m}\right)=1\)
\(2.\left(2-\dfrac{2m^2-2m-m^2}{-m^2+2m}+\dfrac{-2m+2+m}{-m^2+2m}\right)^2-\dfrac{14m-14-7m}{-m^2+2m}=1\)
Có gì bạn giải nốt nha, phương trình cũng "đơn giản" rồi
Mình bấm máy tính Casio nó ra kết quả m=1
nên với m =1 thì Thỏa mãn yêu cầu đề bài
:))))))))))
Cho hệ phương trình với tham số m:mx+y-3=3
x+my-2m+1=0(m là tham số)
a.giải hệ phương trình với m=-1
b.tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất là nghiệm nguyên
a: Khi m=-1 thì hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}-x+y-3=3\\x-y-2\cdot\left(-1\right)+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x+y=6\\x-y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}0x=3\left(vôlý\right)\\x-y=-3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
b: \(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)(1)
=>\(\left\{{}\begin{matrix}mx+y=6\\x+my=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=6-mx\\x+m\left(6-mx\right)=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+6m-m^2x=2m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(1-m^2\right)=-4m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m^2-1\right)=4m+1\\y=6-mx\end{matrix}\right.\)
TH1: m=1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=4\cdot1+1=5\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
TH2: m=-1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=-4+1=-3\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
Th3: \(m\notin\left\{1;-1\right\}\)
Hệ phương trình (1) sẽ tương đương với \(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=6-mx=\dfrac{6\left(m^2-1\right)-m\left(4m+1\right)}{m^2-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=\dfrac{6m^2-6-4m^2-m}{m^2-1}=\dfrac{2m^2-m-6}{m^2-1}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì m/1<>1/m
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để x nguyên thì \(4m+1⋮m^2-1\)
=>\(\left(4m+1\right)\left(4m-1\right)⋮m^2-1\)
=>\(16m^2-1⋮m^2-1\)
=>\(16m^2-16+15⋮m^2-1\)
=>\(m^2-1\inƯ\left(15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(2\right)\)
Để y nguyên thì \(2m^2-m-6⋮m^2-1\)
=>\(2m^2-2-m-4⋮m^2-1\)
=>\(m+4⋮m^2-1\)
=>\(\left(m+4\right)\left(m-4\right)⋮m^2-1\)
=>\(m^2-16⋮m^2-1\)
=>\(m^2-1-15⋮m^2-1\)
=>\(m^2-1\inƯ\left(-15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(3\right)\)
Từ (2),(3) suy ra \(m\in\left\{0;2;4;-2;-4\right\}\)
Thử lại, ta sẽ thấy m=4;m=-2 không thỏa mãn x nguyên; m=4;m=-2 không thỏa mãn y nguyên
=>\(m\in\left\{0;2;-4\right\}\)