LM

Cho hệ phương trình với tham số m:mx+y-3=3

                                                           x+my-2m+1=0(m là tham số)

a.giải hệ phương trình với m=-1

b.tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất là nghiệm nguyên

NT
9 tháng 12 2023 lúc 22:44

a: Khi m=-1 thì hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}-x+y-3=3\\x-y-2\cdot\left(-1\right)+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x+y=6\\x-y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0x=3\left(vôlý\right)\\x-y=-3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

b: \(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)(1)

=>\(\left\{{}\begin{matrix}mx+y=6\\x+my=2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=6-mx\\x+m\left(6-mx\right)=2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+6m-m^2x=2m-1\\y=6-mx\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(1-m^2\right)=-4m-1\\y=6-mx\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m^2-1\right)=4m+1\\y=6-mx\end{matrix}\right.\)

TH1: m=1

Hệ phương trình (1) sẽ trở thành: 

\(\left\{{}\begin{matrix}x\cdot0=4\cdot1+1=5\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

=>Loại

TH2: m=-1

Hệ phương trình (1) sẽ trở thành:

\(\left\{{}\begin{matrix}x\cdot0=-4+1=-3\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

=>Loại

Th3: \(m\notin\left\{1;-1\right\}\)

Hệ phương trình (1) sẽ tương đương với \(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=6-mx=\dfrac{6\left(m^2-1\right)-m\left(4m+1\right)}{m^2-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=\dfrac{6m^2-6-4m^2-m}{m^2-1}=\dfrac{2m^2-m-6}{m^2-1}\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì m/1<>1/m

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để x nguyên thì \(4m+1⋮m^2-1\)

=>\(\left(4m+1\right)\left(4m-1\right)⋮m^2-1\)

=>\(16m^2-1⋮m^2-1\)

=>\(16m^2-16+15⋮m^2-1\)

=>\(m^2-1\inƯ\left(15\right)\)

=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

=>\(m^2\in\left\{2;0;4;6;16\right\}\)

=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)

mà m nguyên

nên \(m\in\left\{0;2;4;-2;-4\right\}\left(2\right)\)

Để y nguyên thì \(2m^2-m-6⋮m^2-1\)

=>\(2m^2-2-m-4⋮m^2-1\)

=>\(m+4⋮m^2-1\)

=>\(\left(m+4\right)\left(m-4\right)⋮m^2-1\)

=>\(m^2-16⋮m^2-1\)

=>\(m^2-1-15⋮m^2-1\)

=>\(m^2-1\inƯ\left(-15\right)\)

=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

=>\(m^2\in\left\{2;0;4;6;16\right\}\)

=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)

mà m nguyên

nên \(m\in\left\{0;2;4;-2;-4\right\}\left(3\right)\)

Từ (2),(3) suy ra \(m\in\left\{0;2;4;-2;-4\right\}\)

Thử lại, ta sẽ thấy m=4;m=-2 không thỏa mãn x nguyên; m=4;m=-2 không thỏa mãn y nguyên

=>\(m\in\left\{0;2;-4\right\}\)

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
LM
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết
LM
Xem chi tiết
PH
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
KH
Xem chi tiết