Nghiệm của đa thức 4x + 5 là:
A. 5 4
B. - 5 4
C. 4 5
D. - 4 5
tìm nghiệm của đa thức
a,2x-1
b,3/4x-5
c,x^-4
d,x^+3x+2
e,x^+3x-4
Lời giải:
a.
$2x-1=0$
$2x=1$
$x=\frac{1}{2}$
b.
$\frac{3}{4}x-5=0$
$\frac{3}{4}x=5$
$x=5:\frac{3}{4}=\frac{20}{3}$
c. $x^2-4=0$
$x^2=4=2^2=(-2)^2$
$\Rightarrow x=2$ hoặc $x=-2$
d.
$x^2+3x+2=0$
$x(x+1)+2(x+1)=0$
$(x+1)(x+2)=0$
$\Rightarrow x+1=0$ hoặc $x+2=0$
$\Rightarrow x=-1$ hoặc $x=-2$
e.
$x^2+3x-4=0$
$x(x-1)+4(x-1)=0$
$(x-1)(x+4)=0$
$\Rightarrow x-1=0$ hoặc $x+4=0$
$\Rightarrow x=1$ hoặc $x=-4$
Cho \(C\left(x\right)=5-8x^4+2x^3+x+5x^4+x^2-4x^3\) và \(D\left(x\right)=\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
a)Thu gọn và sắp xếp các đa thức theo lũy thừa giàm dần của biến.
b)Tính P(x)=D(x)+C(x);Q(x)=C(x)-D(x).
c)Chứng tỏ x=1 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x).
d)Tìm nghiệm của đa thức F(x)=Q(x)-(\(-2x^4+2x^3+x^2-12\))
Giả sử a là nghiệm của đa thức f ( x ) = 3 x + 4 , b là nghiệm của đa thức g ( x ) = - 4 x - 5 . Kết luận nào sau đây là đúng?
A. a < b
B. a > b
C. a = b
D. Không kết luận được
Chọn A
Ta có f(x) = 0 ⇒ 3x + 4 = 0 ⇒ x = -4/3 ⇒ a = -4/3
g(x) = 0 ⇒ -4x - 5 = 0 ⇒ x = -5/4 ⇒ b = -5/4
Vì -4/3 < -5/4 nên a < b.
Tìm nghiệm của các đa thức:
a)x2+4x-5 b)x2-4x-5 c)x2+5x+4 d)x2-5x+4
e)2x2+3x-5 g)3x2-4x+1
a) x^2+4x-5=0<=> (x-1)(x+5)=0<=>x-1 hoặc x+5=0<=> x=1 hoặc x=-5
b) x^2-4x-5=0<=> (x+1)(x-5)=0<=> x+1=0 hoặc x-5=0<=> x=-1 hoặc x=5
c) phân tích (x+1)(x+4)
d)(x-1)(x-4)
e)....
Mấy câu này tương tự
cho đa thức :
P(x) = 1+ 3x^5 - 4x^2 + x^5 + x^3 - x^2 + 3x^3
và Q(x)=2x^5 - x^2 + 4x^5 - x^4 + 4x^2 - 5x
a, thu gọn và sắp xếp các hạng tử của đa thức lũy thừa tăng của biến
b, tính P(x) + Q(x) ; P(x) - Q(x)
c,chứng tỏ rằng x=0 là nghiệm của đa thức Q(x) nhưng ko là nghiệm của đa thức P(x)
cho hai đa thức c(x) = 5-8x^4+2x^3+x+5x^4+x^2-4x^3 vad d(x)=(3x^5+x^4-4x)-(4x^3-7+2x^4+3x^5.tính p(x)=c(x)+d(x),q(x)=c(x)-d(x).tìm nghiệm của f(x)=q(x)-(-2x^4+2x^3+x^2-12)
`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)
`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`
`C(x)= -3x^4-2x^3+x^2+x+5`
`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`
`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`
`D(x)=-x^4-4x^3-4x+7`
`P(x)=C(x)+D(x)`
`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`
`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`
`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`
`P(x)=-4x^4-6x^3+x^2-3x+12`
`Q(x)=C(x)-D(x)`
`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`
`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`
`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`
`Q(x)=-2x^4+2x^3+x^2+5x-2`
`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`
`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`
`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`
`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`
`F(x)=5x+10`
Đặt `5x+10=0`
`\Leftrightarrow 5x=0-10`
`\Leftrightarrow 5x=-10`
`\Leftrightarrow x=-10 \div 5`
`\Leftrightarrow x=-2`
Vậy, nghiệm của đa thức là `x=-2.`
Cho 2 đa thức F(x) = 5x^5 +3x - 4x^4 -2x^3 +6+4x^2 Q(x) = 2x^4 -x +3x^2 +1/4-x^5
a, Sắp sếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến
b, Tính P(x) - Q(x)
c, Chứng tỏ x = -1 là nghiệm của P(x) nhưng ko phải là nghiệm của Q(x)
Cho 2 đa thức:
A(x) = \(x^5-3x^2-x^3-x^4-4x^3-1\frac{3}{4}\)
B(x) = \(-5x^3+2x^4-x^2+x^5\)
a) Sắp xếp đa thức theo luỹ thừa giảm dần
b) Tính C(x) = A(x) - B(x)
c) Chứng tỏ x=0 là nghiệm của B(x) nhưng không là nghiệm của A(x)
d) Chứng tỏ C(x) không có nghiệm
Bạn nào biết thì giúp mình nha, đang rất gấp!
Cảm ơn nhiều!
a,A(x)=x5-x4-5x3-3x2-7/4
B(x)=x5+2x4_5x3_x2
b,C(x)=-3x4-2x2-7/4
c,thay x=0 vào cả hai đa thức ta thấy A(0) khác 0 B(0)=0 suy ra đpcm
d,vì x4lớn hơn bằng 0
x2luôn lớn hơn bằng 0suy ra -3x4-2x2-7/4 luôn nhỏ hơn 0 suy ra đpcm
Cho các đa thức sau :
D(x) = 2x^5+3x^4-x^5-2x^3-x+3
M(x) = -2x^+2x^4+x-4x^3-5x^4-6
a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần
b)Tính D(x) + M(x) ; M(x) - D(x)
c) Tìm nghiệm của đa thức C(x) biết C(x) = D(x)+ M(x)
a) *Ta có: D(x) = 2x^5 + 3x^4 - x^5 - 2x^3 - x + 3
D(x) = ( 2x^5 - x^5 ) + 3x^4 - 2x^3 - x + 3
D(x) = x^5 + 3x^4 - 2x^3 - x + 3
*Ta có: M(x) = -2x + 2x^4 + x - 4x^3 - 5x^4 - 6
M(x) = ( 2x^4 - 5x^4 ) - 4x^3 - ( 2x - x ) - 6
M(x) = -3x^4 - 4x^3 - x - 6
Vậy
b) *Ta có : D(x) + M(x) = ( x^5 + 3x^4 - 2x^3 - x + 3 ) + ( -3x^4 - 4x^3 - x - 6 )
D(x) + M(x) = x^5 + 3x^4 - 2x^3 - x + 3 - 3x^4 - 4x^3 - x - 6
D(x) + M(x) = x^5 + ( 3x^4 - 3x^4 ) - ( 2x^3 + 4x^3 ) - ( x + x ) + ( 3 - 6 )
D(x) + M(x) = x^5 - 6x^3 - 2x - 3
*Ta có : D(x) - M(x) = ( -3x^4 - 4x^3 - x - 6 ) - ( x^5 + 3x^4 - 2x^3 - x + 3 )
D(x) - M(x) = -3x^4 - 4x^3 - x - 6 - x^5 - 3x^4 + 2x^3 + x - 3
D(x) - M(x) = -x^5 - ( 3x^4 + 3x^4 ) - ( 4x^3 - 2x^3 ) - ( x - x ) - ( 6 + 3 )
D(x) - M(x) = -x^5 - 6x^4 -2x^3 - 9
Vậy
a, Ta có:
\(D\left(x\right)=2x^5+3x^4-x^5-2x^3-x+3=x^5+3x^4-2x^3-x+3\)
\(M\left(x\right)=-2x+2x^4+x-4x^3-5x^4-6=-x-3x^4+4x^3-6\)
Sắp xếp : \(D\left(x\right)=x^5+3x^4-2x^3-x+3\)
\(M\left(x\right)=-3x^4+4x^3-x-6\)
b, \(D\left(x\right)+M\left(x\right)=x^5-6x^3-2x-3\)
\(D\left(x\right)-M\left(x\right)=-x^5-6x^4-2x^3-9\)
P/S : lm tắt
c, Đặt \(-3x^4+4x^3-x-6=0\)
=> Đa thức vô nghiệm
Chắc đề sai từ cái ý M(x) ý vì ko có j nên viết 2x cx ko tệ.
Bài 12: Tìm nghiệm của các đa thức sau:
a/ A(x) = 2x2 - 4x b/ B(y) = 3y3 + 4y - 2y2 - 3y3 - 5 + 2y2 - 3
c/ C(t) = 3t2 - 5 + t - 1 – t d/ M(x) = 5x2 - 4 - 3x2 + 2x + 5 - 2x e/ N(x) = 2x2 - 8
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
`e, N(x) = 2x^2 - 8 = 2( x^2 - 4 ) = 2( x-2 )( x + 2 )`
Xét `N(x)=0`
`=> 2(x-2)(x+2)=0`
`=>(x-2)(x+2)=0`
`=>x-2=0` hoặc `x+2=0`
`=>x=2` hoặc `x=-2`
Vậy `x in { +-2 }` là nghiệm của `N(x)`