Những câu hỏi liên quan
TH
Xem chi tiết
NL
25 tháng 7 2020 lúc 21:57

a, Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(\left(x+y\right)^2-2xy-xy\right)\)

\(=1\left(1^2-3\left(-1\right)\right)=1\left(1^2+3\right)=4\)

b, Ta có : \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(\left(x-y\right)^2+3xy\right)\)

\(=1\left(1+3.9\right)=19\)

Bình luận (0)
DC
Xem chi tiết
LN
Xem chi tiết
NN
26 tháng 11 2016 lúc 21:56

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

Bình luận (0)
TH
26 tháng 11 2016 lúc 21:20

mk chua hok den nen ko co bit lam

Bình luận (0)
LN
26 tháng 11 2016 lúc 21:23

cảm ơn b nhé

Bình luận (0)
VT
Xem chi tiết
ND
4 tháng 9 2017 lúc 21:13

Có: (x+y+z)3 = (x+y)3 + z3 + 3z(x+y)(x+y+z)

= x3 + y3 + z3 + 3xy(x+y) + 3z(x+y)(x+y+z)

= x3 + y3 + z3 + 3(x+y)[xy+z(x+y+z)]

= x3 + y3 + z3 + 3(x+y)(xy+xz+yz+z2)

= x3 + y3 + z3 + 3(x+y)[x(y+z)+z(z+y)]

= x3 + y3 + z3 + 3(x+y)(y+z)(x+z) (đpcm)

Bình luận (0)
NG
Xem chi tiết
NM
19 tháng 11 2021 lúc 19:35

\(\dfrac{x+2}{x-2}=\dfrac{y+3}{y-3}\Rightarrow\left(x+2\right)\left(y-3\right)=\left(x-2\right)\left(y+3\right)\\ \Rightarrow xy-3x+2y-6=xy+3x-2y-6\\ \Rightarrow6x=4y\\ \Rightarrow3x=2y\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

Bình luận (0)
LN
Xem chi tiết
MS
2 tháng 1 2017 lúc 18:31

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

Bình luận (0)
CK
Xem chi tiết
CK
Xem chi tiết
AN
Xem chi tiết
ND
7 tháng 7 2021 lúc 12:59

Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)

\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
TN
13 tháng 10 2016 lúc 18:17

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

Bình luận (0)
MA
13 tháng 10 2016 lúc 15:21

P OI cai nay dung bat dang thuc co si do

Bình luận (0)
TD
13 tháng 10 2016 lúc 18:06

k biết làm mà!! )))

Bình luận (0)