Những câu hỏi liên quan
H24
Xem chi tiết
NT
18 tháng 8 2021 lúc 21:54

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

Bình luận (1)
DK
Xem chi tiết
NL
3 tháng 3 2022 lúc 0:36

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
HT
Xem chi tiết
TA
23 tháng 7 2021 lúc 9:06

còn cái nịt

Bình luận (2)
P9
Xem chi tiết
NT
4 tháng 3 2022 lúc 19:00

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
NT
15 tháng 4 2023 lúc 13:11

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
NT
29 tháng 6 2023 lúc 14:05

1:

Δ=(2m-4)^2-4(m^2-3)

=4m^2-16m+16-4m^2+12=-16m+28

Để PT có hai nghiệm phân biệt thì -16m+28>0

=>-16m>-28

=>m<7/4

2: x1^2+x2^2=22

=>(x1+x2)^2-2x1x2=22

=>(2m-4)^2-2(m^2-3)=22

=>4m^2-16m+16-2m^2+6=22

=>2m^2-16m+22=22

=>2m^2-16m=0

=>m=0(nhận) hoặc m=8(loại)

3: A=x1^2+x2^2+2021

=2m^2-16m+2043

=2(m^2-8m+16)+2011

=2(m-4)^2+2011>=2011

Dấu = xảy ra khi m=4

Bình luận (0)
LN
Xem chi tiết
NT
2 tháng 8 2021 lúc 23:53

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 23:54

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

Bình luận (0)
LD
Xem chi tiết
DT
Xem chi tiết
DT
17 tháng 4 2016 lúc 15:25

trời đất
ai tl hộ mình vs

Bình luận (0)