Giải phương trình sau: 4 sin 2 2 x + 6 sin 2 x - 3 cos 2 x - 9 cosx = 0
A. x = - π 3 + kπ
B. x = π 3 + kπ
C. x = - π 12 + kπ, - 5 π 12 kπ
D. Cả A và B đúng
Giải các phương trình sau:
1. tan2x+3= (1+√2 sin x)(tan x+ √2 cos x)
2. (1- cos x. cos2x )/ sin2x - 1/ cos x= 4 sin2x - sin x-1
3. sin3x + 2 cos3x+ cos2x - 2sin2x - 2sinx-1=0
Giải phương trình sau: |x-2|(x-1)(x+1)(x+2)=4.
Nếu x lớn hơn hoặc bằng 2, có:
|x - 2|(x - 1)(x + 1)(x + 2) = 4
(x - 2)(x + 2)(x - 1)(x + 1) = 4
(x2 - 4)(x2 - 1) = 4
x4 - 4x2 + 4 = 4
(x2 - 2)2 = 4 => x2 - 2 = 2 => x2 = 4 => x = 2
Nếu x nhỏ hơn 2, có:
|x - 2|(x - 1)(x + 1)(x + 2) = 4
(2 - x)(2 + x)(x - 1)(x + 1) = 4
(4 - x2)(x2 - 1) = 4
5x2 - x4 - 4 = 4
x2 - (x4 - 4x2 + 4) = 4
x2 - 4 - (x2 - 2)2 = 0
(x - 2)(x + 2) - (x2 - 2)2 = 0
Giải phương trình sau :
a, x/4 - 3x + 11 = 5/6 - x + 7x
b, 3x-5 = 7x + 2
b) 3x-5=7x+2
3x-7x=2+5
-4x=7
=> x=-7/4
em mới học lớp 6 thôi nên chỉ giải được câu b thôi
a) x/a-3x+11=5/6-x+7x
x/4-3x+11=5/6+6x
x/4-9x=-61/6
-35x/4=-61/6
-210x=-244
x=244/210=122/105
Giải phương trình:
(sin^2(2x+pi)+cos2x)/(cotx)=1/2.sin2x
Giải phương trình:
a, (x^2+x)^2+4(x^2+x)=12
b, 6x^4-5x^3-38x^2-5x+6=0 (phương trình có hệ số đối xứng bậc 4)
\(\text{a) }\left(x^2+x\right)^2+4\left(x^2+x\right)=12\\ \Leftrightarrow\text{Đặt }x^2+x=y\\ \Leftrightarrow y^2+4y=12\\ \Leftrightarrow y^2+6y-2y-12=0\\ \Leftrightarrow\left(y^2+6y\right)-\left(2y+12\right)=0\\ \Leftrightarrow y\left(y+6\right)-2\left(y+6\right)=0\\ \Leftrightarrow\left(y+6\right)\left(y-2\right)=0\\ \Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{23}{4}\right)\left(x^2+2x-x-2\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{23}{4}\right]\left[\left(x^2+2x\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\right]\left[x\left(x+2\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\left(Vì\text{ }\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\ \text{Vậy }S=\left\{1;-2\right\}\\ \)
\(\text{b) }6x^4-5x^3-38x^2-5x+6=0\\ \Leftrightarrow x^2\left(6x^2-5x-38-\dfrac{5}{x}+\dfrac{6}{x^2}\right)=0\\ \Leftrightarrow x^2\left[\left(6x^2+12+\dfrac{6}{x^2}\right)-\left(5x+\dfrac{5}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x^2+2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \Leftrightarrow x^2\left[6\left(x+\dfrac{1}{x}\right)^2-5\left(x+\dfrac{1}{x}\right)-50\right]=0\\ \text{Đặt }x+\dfrac{1}{x}=y\\ \Leftrightarrow x^2\left(6y^2-5y-50\right)=0\\ \Leftrightarrow x^2\left(6y^2-20y+15y-50\right)=0\\ \Leftrightarrow x^2\left[\left(6y^2-20y\right)+\left(15y-50\right)\right]=0\\ \Leftrightarrow x^2\left[2y\left(3y-10\right)+5\left(3y-10\right)\right]=0\\ \Leftrightarrow x^2\left(2y+5\right)\left(3y-10\right)=0\\ \Leftrightarrow x^2\left(2x+\dfrac{2}{x}+5\right)\left(3x+\dfrac{3}{x}-10\right)=0\\ \Leftrightarrow\left(2x^2+2+5x\right)\left(3x^2+3-10x\right)=0\\ \Leftrightarrow\left(2x^2+4x+x+2\right)\left(3x^2-9x-x+3\right)=0\\ \Leftrightarrow\left[\left(2x^2+4x\right)+\left(x+2\right)\right]\left[\left(3x^2-9x\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left[2x\left(x+2\right)+\left(x+2\right)\right]\left[3x\left(x-3\right)-\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x+1\right)\left(x+2\right)\left(3x-1\right)\left(x-3\right)=0\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\3x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=-2\\3x=1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\\x=\dfrac{1}{3}\\x=3\end{matrix}\right.\\ \text{Vậy }S=\left\{-\dfrac{1}{2};-2;\dfrac{1}{3};3\right\}\)
Giải phương trình sau: x/(x+1)+(x+1)/(x+2)+(x+2)/x=25/6
\(\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x}=\frac{25}{6}\)
<=> 6x2(x + 2) + 6x(x + 1)2 + 6(x + 2)2(x + 1) = 25x(x + 1)(x + 2)
<=> 18x2 + 54x2 + 54x + 24 = 25x3 + 75x2 + 50x
<=> 18x2 + 54x2 + 54x + 24 - 25x2 - 75x2 - 50x = 0
<=> -7x3 - 21x2 + 4x + 24 = 0
<=> (-7x2 - 28x - 24)(x - 1) = 0
vì 7x2 + 28x + 24 khác 0 nên:
<=> x - 1 = 0
<=> x = 0
giải phương trình \(6\sqrt{x+2}+3\sqrt{3-x}=3x+1+4\sqrt{-x^2+x+6}\)
ĐKXĐ: ...
\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)
Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)
\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)
Pt trở thành:
\(3t=t^2-10\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)
Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
giải phương trình sau
\(x\left(x+2\right)-3x+6=0\)
Miyuki Misaki có thể giải thích tại sao x2 + 3x + 6 = 0 vô nghiệm được ko?
\(x\left(x+2\right)-3x+6=0\)
\(\Leftrightarrow x^2+2x-3x+6=0\)
\(\Leftrightarrow x^2-x+6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;-2\right\}\)
Giải phương trình sau:
X - 3/2 + X - 5/6 = -1/3
Giúp mình nhé!!!
X-\(\frac{3}{2}\)+X-\(\frac{5}{6}\)=\(-\frac{1}{3}\)
➜2X=\(-\frac{1}{3}\)+\(\frac{3}{2}+\frac{5}{6}\)
➜ 2X=2
➜X = 1
Vậy....................
Giải phương trình: \((3x+4)(x+1)(6x+7)^2=6\)
\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)
Đặt \(3x^2+7x=a\Rightarrow36x^2+84x=12a\)
\(\left(a+4\right)\left(12a+49\right)-6=0\)
\(\Leftrightarrow12a^2+97a+190=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-\frac{10}{3}\\a=-\frac{19}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2+7x+\frac{10}{3}=0\\3x^2+7x+\frac{19}{4}=0\end{matrix}\right.\) \(\Leftrightarrow...\)