Những câu hỏi liên quan
HD
Xem chi tiết
NC
1 tháng 2 2016 lúc 20:55

Hỏi đáp Toán

Bình luận (0)
HT
1 tháng 2 2016 lúc 16:22

Hỏi đáp Toán

Bình luận (0)
MN
Xem chi tiết
LM
2 tháng 9 2019 lúc 16:24

=> x = \(\frac{\pi}{3}\)+kπ

Bình luận (0)
LN
Xem chi tiết
NP
Xem chi tiết
NL
17 tháng 10 2019 lúc 15:46

a/ \(sinx=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

b/ \(cosx=\frac{\sqrt{3}}{2}=cos\left(\frac{\pi}{6}\right)\Rightarrow x=\pm\frac{\pi}{6}+k2\pi\)

c/ \(cosx=\frac{\sqrt{2}}{2}=cos\left(\frac{\pi}{4}\right)\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)

d/ \(tanx=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\Rightarrow x=-\frac{\pi}{3}+k\pi\)

Bình luận (0)
BK
Xem chi tiết
NL
16 tháng 4 2019 lúc 23:01

Đầu tiên bạn cần biết công thức \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

Ta có:

\(\frac{sinx+cosx+cos2x}{1-sin2x+cos2x+2cosx}=\frac{sinx+cosx+cos^2x-sin^2x}{1-2sinx.cosx+2cos^2x-1+2cosx}\)

\(=\frac{sinx+cosx+\left(cosx-sinx\right)\left(cosx+sinx\right)}{2cos^2x-2sinx.cosx+2cosx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx+1\right)}{2cosx\left(cosx-sinx+1\right)}\)

\(=\frac{sinx+cosx}{2cosx}=\frac{sinx}{2cosx}+\frac{cosx}{2cosx}=\frac{1}{2}tanx+\frac{1}{2}\)

Bình luận (0)
HN
Xem chi tiết
HP
27 tháng 9 2021 lúc 12:59

a, \(sin^2x-4sinx+3=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(sinx-3\right)=0\)

\(\Leftrightarrow sinx=1\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

Bình luận (0)
HP
27 tháng 9 2021 lúc 13:01

b, \(2cos^2-cosx-1=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Bình luận (0)
HP
27 tháng 9 2021 lúc 13:06

c, \(3sin^2x-2cosx+2=0\)

\(\Leftrightarrow3-3sin^2x+2cosx-5=0\)

\(\Leftrightarrow3cos^2x+2cosx-5=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(3cosx+5\right)=0\)

\(\Leftrightarrow cosx=1\)

\(\Leftrightarrow x=k2\pi\)

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 10 2020 lúc 7:33

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:33

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:34

6.

\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)

\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)

\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
BH
Xem chi tiết
MH
Xem chi tiết
MH
19 tháng 9 2017 lúc 19:23

hộ vs ae ơi

Bình luận (0)
H24
Xem chi tiết
HP
8 tháng 2 2022 lúc 14:46

a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)

\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)

\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)

\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)

\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)

\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)

\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Đối chiếu điều kiện ta được:

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (1)