Những câu hỏi liên quan
H24
Xem chi tiết
TD
2 tháng 3 2020 lúc 21:03

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
TL
2 tháng 3 2020 lúc 20:50

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
2 tháng 3 2020 lúc 20:55

a) \(\Leftrightarrow2x^2+x+1+x^2-x+1+2\sqrt{\left(2x^2+x+1\right)\left(x^2-x+1\right)}=9x^2\)

\(\Leftrightarrow2\sqrt{2x^4-x^3+2x^2+1}=6x^2-2\)

\(\Leftrightarrow2x^4-x^3+2x^2+1=9x^4-6x^2+1\)

\(\Leftrightarrow7x^4+x^3-8x^2=0\)

\(\Leftrightarrow7x^2+x-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-8}{7}\end{cases}}\) 

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NL
17 tháng 9 2021 lúc 15:35

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)

\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
TX
27 tháng 5 2017 lúc 13:30

bạn chỉ cần cố gắng là làm được

Bình luận (0)
TN
Xem chi tiết
H24
1 tháng 12 2021 lúc 21:49

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

Bình luận (0)
TT
Xem chi tiết
H24
8 tháng 5 2021 lúc 10:29

$ĐKXĐ : x \neq 2, x \neq -2$

Ta có : $1+\dfrac{2}{x-2} = \dfrac{2x^2}{x^2-4}$

$\to \dfrac{x^2-4+2.(x+2)}{(x-2).(x+2)} = \dfrac{2x^2}{(x-2).(x+2)}$

$\to x^2-4+2.(x+2)  = 2x^2$

$\to x^2 -2x - 8 = 0 $

$\to (x-4).(x+2) = 0 $

$\to x = 4$ ( Do $x \neq -2, 2$ )

Vậy \(S=\left\{4\right\}\)

Bình luận (0)
NT
Xem chi tiết
NT
28 tháng 10 2021 lúc 23:56

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{x-4}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-4=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=8\end{matrix}\right.\)

Bình luận (0)
Xem chi tiết
AN
4 tháng 4 2019 lúc 14:49

\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)

\(\Leftrightarrow x=4\)

Bình luận (0)
TS
Xem chi tiết
NT
3 tháng 4 2022 lúc 19:17

Đặt \(\left\{{}\begin{matrix}x-2y=a\\\dfrac{1}{2x+3y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=2\\2a+3b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3+2.-1\\y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm hpt \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (1)