cho d:4x-5y-3=0 và d'=V(d) (O;2) viết pt d'
Trong hệ tọa độ (Oxy) cho A(1;2); B(3;-4) và d1:4x+5y-17=0; d2:x+2y-18=0. Lấy C ∈ d1;D ∈ d2 sao cho ABCD là hình bình hành. Tính độ dài đường chéo AC
\(C\in d_1\) nên \(C\left(x_1;\dfrac{17-4x_1}{5}\right)\); \(D\in d_2\) nên \(D\left(x_2;\dfrac{18-x_2}{2}\right)\).
Tứ giác ABCD là hình bình hành nên \(\overrightarrow{AB}=\overrightarrow{CD}\).
\(\overrightarrow{AB}\left(2;-6\right)\), \(\overrightarrow{CD}\left(x_2-x_1;\dfrac{40+8x_1-5x_2}{10}\right)\).
Suy ra \(\left\{{}\begin{matrix}x_2-x_1=2\\\dfrac{-56+8x_1-5x_2}{10}=-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2-x_1=2\\8x_1-5x_2=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\).
Vậy \(C\left(2;\dfrac{9}{2}\right);D\left(4;7\right)\).
\(AC=\left|\overrightarrow{AC}\right|=\sqrt{\left(2-1\right)^2+\left(\dfrac{9}{2}-2\right)^2}=\dfrac{\sqrt{29}}{2}\).
Trong mat phang toa do Oxy cho hai duong thang d 3x-5y+3=0 va d' 3x-5y+24=0. tim v biet v=can 13 va Tv(d)=d'
trong mặt phẳng tọa độ Oxy, cho 2 đường thẳng d: 3x+5y=3=0 và d': 3x+5y-5=0. tìm tọa độ vecto v, biết |v|= \(\sqrt{2}\) và \(T_{\overrightarrow{v}}\left(d\right)=d'\)
help pls :(
Chắc pt d là \(3x+5y+3=0\) ?
Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=2\) (1)
Gọi \(M\left(-1;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=-1+a\\y_{M'}=b\end{matrix}\right.\) thay vào pt (d') ta được:
\(3\left(-1+a\right)+5b-5=0\)
\(\Leftrightarrow b=\frac{8-3a}{5}\)
Thế vào (1): \(a^2+\left(\frac{8-3a}{5}\right)^2=2\)
\(\Leftrightarrow34a^2-48a+14=0\Rightarrow\left[{}\begin{matrix}a=1\Rightarrow b=1\\a=\frac{7}{17}\Rightarrow b=\frac{23}{17}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}\overrightarrow{v}=\left(1;1\right)\\\overrightarrow{v}=\left(\frac{7}{17};\frac{23}{17}\right)\end{matrix}\right.\)
điểm M đặt bao nhiêu cũng được à bạn? tại thầy mình hay lấy mấy điểm là (0,1) :V
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x − 5y + 3 = 0 và vectơ v → = ( 2 ; 3 ) . Hãy viết phương trình đường thẳng d’ là ảnh của d qua phép tịnh tiến theo vectơ v → .
Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto v → ( 2 ; 3 )
Do M(x,y) ∈ d nên
3x − 5y + 3 = 0
⇒ 3(x′−2) − 5(y′−3) + 3 = 0
⇔ 3x′ − 5y′ + 12 = 0 (d′)
Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0
lập phương trình tham số và phương trình tổng quát của đường thẳng d biết: d đi qua C(-2;5) và song song với đường thẳng d*; 4x-5y+10=0
Ta có : \(\overrightarrow{n_{d'}}=\left(4;-5\right)\Rightarrow\overrightarrow{n_d}=\left(4;-5\right)\Rightarrow\overrightarrow{u_d}=\left(5;4\right)\)
PTTQ (d) : \(4\left(x+2\right)-5\left(y-5\right)=0\)
\(\Leftrightarrow4x-5y+33=0\)
PTTS (d) : \(\left\{{}\begin{matrix}x=-2+5t\\y=5+4t\end{matrix}\right.\)
22. Trong mặt phẳng toạ độ Oxy vectơ nào trong các vectơ sau KHÔNG là vectơ pháp tuyến của đg thẳng d có pt 2x -3y +4=0
A. (4;-6)
B. (-3;2)
C.(-2;3)
D.(2;-3)
23. Trong mặt phẳng toạ độ Oxy , cho đg thẳng d : 4x +3y -23=0 . Điểm nào sau đây ko thuộc d
A. (5;3)
B. (2;5)
C. (-1;9)
D. (8;-3)
24. Trong mặt phẳng toạ độ Oxy , cho đg thẳng d : 3x +5y +2017=0. Tìm mệnh đề sai
A. d có vectơ pháp tuyến n= (3;5)
B. d có vectơ chỉ phương u = (5;-3)
C. d có hệ số góc k=5/3
D. d // vs đg thẳng : 3x +5y =0
22.
Đường thẳng d có 1 vtpt là \(\left(2;-3\right)\)
Do đó \(\left(-3;2\right)\) ko là 1 vtpt của d (vì ko thể biểu diễn thông qua vt (2;-3)
23.
Thay tọa độ 4 điểm vào thì điểm A(5;3) ko thỏa mãn
24.
Đường thẳng d nhận \(\left(3;5\right)\) là 1 vtpt nên nhận \(\left(5;-3\right)\) là 1 vtcp
\(\Rightarrow\) d có hệ số góc là \(-\frac{3}{5}\)
Đáp án C sai
Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:
a) 3x – y = 2; b) x + 5y = 3;
c) 4x – 3y = -1; d) x + 5y = 0 ;
e) 4x + 0y = -2 ; f) 0x + 2y = 5.
a) 3x – y = 2 (1)
⇔ y = 3x – 2.
Vậy phương trình có nghiệm tổng quát là (x; 3x – 2) (x ∈ R).
Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng y = 3x – 2 (Hình vẽ).
+ Tại x = 2/3 thì y = 0 ⇒ đường thẳng y = 3x – 2 đi qua điểm (2/3 ; 0).
+ Tại x = 0 thì y = -2 ⇒ đường thẳng y = 3x – 2 đi qua điểm (0; -2).
Vậy đường thẳng y = 3x – 2 là đường thẳng đi qua điểm (2/3 ; 0) và (0; -2).
b) x + 5y = 3 (2)
⇔ x = 3 – 5y
Vậy phương trình có nghiệm tổng quát là (3 – 5y; y) (y ∈ R).
Đường thẳng biểu diễn tập nghiệm của (2) là đường thẳng x + 5y = 3.
+ Tại y = 0 thì x = 3 ⇒ Đường thẳng đi qua điểm (3; 0).
+ Tại x = 0 thì y=3/5 ⇒ Đường thẳng đi qua điểm (0; 3/5).
Vậy đường thẳng x + 5y = 3 là đường thẳng đi qua hai điểm (3; 0) và (0; 3/5).
c) 4x – 3y = -1
⇔ 3y = 4x + 1
⇔
Vậy phương trình có nghiệm tổng quát là (x;4/3x+1/3)(x ∈ R).
Đường thẳng biểu diễn tập nghiệm phương trình là đường thẳng 4x – 3y = -1.
+ Tại x = 0 thì y = 1/3
Đường thẳng đi qua điểm (0;1/3) .
+ Tại y = 0 thì x = -1/4
Đường thẳng đi qua điểm (-1/4;0) .
Vậy đường thẳng 4x – 3y = -1 đi qua (0;1/3) và (-1/4;0).
d) x + 5y = 0
⇔ x = -5y.
Vậy nghiệm tổng quát của phương trình là (-5y; y) (y ∈ R).
Đường thẳng biểu diễn nghiệm của phương trình là đường thẳng x + 5y = 0.
+ Tại x = 0 thì y = 0 ⇒ Đường thẳng đi qua gốc tọa độ.
+ Tại x = 5 thì y = -1 ⇒ Đường thẳng đi qua điểm (5; -1).
Vậy đường thẳng x + 5y = 0 đi qua gốc tọa độ và điểm (5; -1).
e) 4x + 0y = -2
⇔ 4x = -2 ⇔
Phương trình có nghiệm tổng quát (-0,5; y)(y ∈ R).
Đường thẳng biểu diễn tập nghiệm là đường thẳng x = -0,5 đi qua điểm (-0,5; 0) và song song với trục tung.
f) 0x + 2y = 5
Phương trình có nghiệm tổng quát (x; 2,5) (x ∈ R).
Đường thẳng biểu diễn tập nghiệm là đường thẳng y = 2,5 đi qua điểm (0; 2,5) và song song với trục hoành.
trong mặt phẳng Oxy, cho d: 2x+5y-5=0 ; d': 2x+5y+63=0. tìm tọa độ vecto v có phương vuông góc với d để \(T_{\overrightarrow{v}}\)(d)=d'
help pls :(