Những câu hỏi liên quan
MT
Xem chi tiết
NL
25 tháng 9 2020 lúc 22:35

\(M=\left(x^2+6xy+9y^2\right)+\left(4x^2+4x+1\right)+\left(y^2-8y+16\right)+1\)

\(M=\left(x+3y\right)^2+\left(2x+1\right)^2+\left(y-4\right)^2+1>0;\forall x;y\)

Bình luận (0)
NT
25 tháng 9 2020 lúc 22:38

Ta có: \(M=18+4x-8y+6xy+5x^2+10y^2\)

\(=4x^2+4x+1+x^2+6xy+9y^2+y^2-8y+16+1\)

\(=\left(2x+1\right)^2+\left(x+3y\right)^2+\left(y-4\right)^2+1\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\left(x+3y\right)^2\ge0\forall x,y\)

\(\left(y-4\right)^2\ge0\forall y\)

Do đó: \(\left(2x+1\right)^2+\left(x+3y\right)^2+\left(y-4\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(x+3y\right)^2+\left(y-4\right)^2+1\ge1>0\forall x,y\)

hay \(M>0\forall x,y\)

Bình luận (0)
QN
Xem chi tiết
TT
20 tháng 12 2020 lúc 10:42

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2x+1\right)+8\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+8>0\forall x;y\)  (do \(\left(x-3y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(y-1\right)^2\ge0\forall x;y\)

Bình luận (0)
HN
Xem chi tiết
KN
7 tháng 9 2020 lúc 22:21

\(5x^2+10y^2-6xy-4x-10y+14\)

\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)-12\)

\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-5\right)^2-12\ge-12\) đề có nhầm không bạn?

Bình luận (0)
 Khách vãng lai đã xóa
VK
Xem chi tiết
ND
11 tháng 6 2018 lúc 7:15

_______________Bài làm___________________

a, \(x^2+xy+y^2+1\)

\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)

Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)

\(\dfrac{3y^2}{4}\ge0\forall y\)

Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)

b, \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)

\(\left(y-3\right)^2\ge0\forall y\)

Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

c, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Do .........

tự làm ik

Bình luận (0)
NH
Xem chi tiết
DT
Xem chi tiết

a)

\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)

\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)\(y\)

b)

\(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)

\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)

Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)

\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)

\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)

\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)

c)

\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)

\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)

\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)

Ta có \(\left(2x+1\right)^2\ge0\)với mọi  \(x\)

\(\left(y-1\right)^2\ge\)với mọi \(y\)

\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)

và \(1>0\)

\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)

Bình luận (0)
DH
1 tháng 9 2017 lúc 18:39

a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)

b. \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)

c.  tương tự ý b

Bình luận (0)
TK
Xem chi tiết
DH
21 tháng 7 2017 lúc 6:45

a, \(x^2+xy+y^2+1=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)

\(\Rightarrow\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1\)

Vậy............

b, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)

\(=x^2-3xy-3xy+9y^2+4x^2-2x-2x+1+y^2-y-y+1+1\)

\(=x\left(x-3y\right)-3y\left(x-3y\right)+2x\left(2x-1\right)-\left(2x-1\right)+y\left(y-1\right)-\left(y-1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2\ge0\)

\(\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy..............

Chúc bạn học tốt!!!

Bình luận (0)
H24
Xem chi tiết
KR
28 tháng 9 2023 lúc 22:00

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

Bình luận (0)
TN
Xem chi tiết
NQ
12 tháng 8 2017 lúc 19:37

a, x^2 + xy + y^2 + 1 

= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0

Bình luận (0)