\(M=18+4x-8y+6xy+5x^2+10y^2\)
\(=\left(x^2+6xy+9y^2\right)+\left(4x^2+4x+1\right)+\left(y^2-8y+16\right)+1\)
\(=\left(x+y\right)^2+4\left(x+\frac{1}{2}\right)^2+\left(y-4\right)^2+1\)
Có \(\left(x+y\right)^2\ge0\forall xy\)
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\left(y-4\right)^2\ge0\forall y\)
\(\Rightarrow M\ge1\forall x,y\)
hay \(M>0\forall x,y\)