GPT
a) \(sinx=-\frac{\sqrt{3}}{2}\) voi \(x\in\left(0;2\pi\right)\)
b) \(2sin2x+1=0\) voi \(0< x< 90^o\)
c) \(2cos\left(x-\frac{\pi}{3}\right)=1\) voi \(-\pi< x< \pi\)
d) \(cos^3x-2cos^2x=0\) voi moi \(x\in\left[0;720^o\right]\)
GPT
a) \(sinx-cos2x=0\)
b) \(sinx+\sqrt{3}sin\frac{x}{2}=0\)
c) \(sinx-\sqrt{3}cos\frac{x}{2}=0\)
d) \(tan\left(3x-\frac{\pi}{5}\right)=cotx\)
e) \(tan3x.tanx=1\)
a.
\(cos2x=sinx\)
\(\Leftrightarrow cos2x=cos\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}+\sqrt{3}sin\frac{x}{2}=0\)
\(\Leftrightarrow sin\frac{x}{2}\left(2cos\frac{x}{2}+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\frac{x}{2}=0\\cos\frac{x}{2}=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=k\pi\\\frac{x}{2}=\frac{5\pi}{6}+k2\pi\\\frac{x}{2}=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{5\pi}{3}+k4\pi\\x=-\frac{5\pi}{3}+k4\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}-\sqrt{3}cos\frac{x}{2}=0\)
\(\Leftrightarrow cos\frac{x}{2}\left(2sin\frac{x}{2}-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\frac{x}{2}=0\\sin\frac{x}{2}=\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{3}+k2\pi\\\frac{x}{2}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{2\pi}{3}+k4\pi\\x=\frac{4\pi}{3}+k4\pi\end{matrix}\right.\)
d.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(3x-\frac{\pi}{5}\right)=tan\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow3x-\frac{\pi}{5}=\frac{\pi}{2}-x+k\pi\)
\(\Leftrightarrow x=\frac{7\pi}{40}+\frac{k\pi}{4}\)
e.
ĐKXĐ: \(\left\{{}\begin{matrix}cos3x\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{\pi}{6}+\frac{k\pi}{3}\)
\(\frac{sin3x.sinx}{cos3x.cosx}=1\)
\(\Leftrightarrow cos3x.cosx=sin3x.sinx\)
\(\Leftrightarrow cos3x.cosx-sin3x.sinx=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
gpt
\(\frac{cosx-\sqrt{3}sinx}{sinx-\frac{1}{2}}=0\)
ĐKXĐ: \(sinx\ne\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{6}+k2\pi\\x\ne\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Pt tương đương:
\(cosx=\sqrt{3}sinx\Leftrightarrow tanx=\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow x=\frac{\pi}{6}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=\frac{7\pi}{6}+k2\pi\)
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
\(GPT:2\sqrt{3}.cotx-\frac{1}{sinx}=1+\frac{\sqrt{3}cotx}{sinx}-cot^2x\)
giải các phương trình sau:
a, \(\sqrt{3}sinx+cosx=\frac{1}{cosx}\)
b,\(3tan^2x\left(x-\frac{\pi}{2}\right)=2\left(\frac{1-sinx}{sinx}\right)\)
c,\(1+sinx+cosx+tanx=0\)
d,\(\frac{1}{cosx}+\frac{1}{sinx}=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
tìm giá trị lớn nhất M của hàm số\(y=a+b\sqrt{sinx}+c\sqrt{cosx};x\in\left(0;\frac{\pi}{4}\right);a^2+b^2+c^2=3\)
Bạn xem lại đề. Mình thấy $x\in (0; \frac{\pi}{4}]$ thì hợp lý hơn @_@
Nếu miền giá trị của x có "chạm" vào \(\frac{\pi}{4}\) thì:
\(y^2=\left(a.1+b.\sqrt{sinx}+c.\sqrt{cosx}\right)^2\)
\(\Rightarrow y^2\le\left(a^2+b^2+c^2\right)\left(1+sinx+cosx\right)\)
\(\Rightarrow y^2\le3\left[1+\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right]\le3\left(1+\sqrt{2}\right)\)
\(\Rightarrow y\le\sqrt{3+3\sqrt{2}}\)
\(M=\sqrt{3+3\sqrt{2}}\) khi \(\left\{{}\begin{matrix}x=\frac{\pi}{4}\\b=c=\sqrt{\frac{6-3\sqrt{2}}{2}}\\a=\sqrt{3\sqrt{2}-3}\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(y^2=(a+b\sqrt{\sin x}+c\sqrt{\cos x})^2\leq (a^2+b^2+c^2)(1+\sin x+\cos x)=3(1+\sin x+\cos x)\)
$(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x=1+\sin 2x\leq 1+1=2$ với mọi $x\in (0;\frac{\pi}{4}]$
$\Rightarrow \sin x+\cos x\leq \sqrt{2}$
$\Rightarrow 1+\sin x+\cos x\leq \sqrt{2}+1$
Do đó: $y^2\leq 3(1+\sqrt{2})$
$\Rightarrow y\leq \sqrt{3+3\sqrt{2}}$
Vậy $M=\sqrt{3+3\sqrt{2}}$
GPT : \(\dfrac{1}{sinx+cot2x}=\dfrac{\sqrt{2}.\left(cosx-sinx\right)}{cotx-1}\)
giải pt
a) \(cosx\left(3tanx-\sqrt{3}\right)=0\)
b) \(\frac{\left(2-sinx\right)\left(\sqrt{3}cosx-1\right)}{1+sinx}+2=sinx\)
c) \(\frac{tanx-sinx}{sin^3x}=\frac{1}{cosx}\)
d) \(\frac{sin3x.cosx-sinx.cos3x}{cos^2x}=2\sqrt{3}\)
a/
ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow3tanx-\sqrt{3}=0\)
\(\Rightarrow tanx=\frac{1}{\sqrt{3}}\)
\(\Rightarrow x=\frac{\pi}{6}+k\pi\)
b/
ĐKXĐ: \(sinx\ne-1\)
\(\Leftrightarrow\frac{\left(2-sinx\right)\left(\sqrt{3}cosx-1\right)}{1+sinx}+2-sinx=0\)
\(\Leftrightarrow\left(2-sinx\right)\left(\frac{\sqrt{3}cosx-1}{1+sinx}+1\right)=0\)
\(\Leftrightarrow\frac{\sqrt{3}cosx-1}{1+sinx}=-1\) (do 2-sinx>0 với mọi x)
\(\Leftrightarrow\sqrt{3}cosx-1=-1-sinx\)
\(\Leftrightarrow sinx=-\sqrt{3}cosx\Rightarrow tanx=-\sqrt{3}\)
\(\Rightarrow x=-\frac{\pi}{3}+k\pi\)
c/
ĐKXĐ: \(sin2x\ne0\)
\(\Leftrightarrow\frac{\frac{sinx}{cosx}-sinx}{sin^3x}=\frac{1}{cosx}\)
\(\Leftrightarrow sinx-sinx.cosx=sin^3x\)
\(\Leftrightarrow1-cosx=sin^2x\)
\(\Leftrightarrow1-cosx=1-cos^2x\)
\(\Leftrightarrow cos^2x-cosx=0\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\)
d/
ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow\frac{sin\left(3x-x\right)}{cos^2x}=2\sqrt{3}\)
\(\Leftrightarrow\frac{sin2x}{cos^2x}=2\sqrt{3}\)
\(\Leftrightarrow\frac{2sinx.cosx}{cos^2x}=2\sqrt{3}\)
\(\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\)
\(\Leftrightarrow tanx=\sqrt{3}\)
\(\Rightarrow x=\frac{\pi}{3}+k\pi\)
giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)
a, \(sinx+cosx=\sqrt{2}sin5x\)
b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)
c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)
d, \(3sin^2x+\sqrt{3}sin2x=3\)
e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)
g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
h, \(sin5x-cos5x=\sqrt{2}cos13x\)
i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)
\( a){\mathop{\rm sinx}\nolimits} + \cos x = \sqrt 2 \sin 5x\\ \Leftrightarrow \sqrt 2 .\sin \left( {x + \dfrac{\pi }{4}} \right) = \sqrt 2 .\sin 5x\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = \sin 5x\\ \Leftrightarrow \left[ \begin{array}{l} x + \dfrac{\pi }{4} = 5x + k2\pi \\ x + \dfrac{\pi }{4} = \pi - 5x + k2\pi \end{array} \right.\left( {k \in \mathbb {Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\\ x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \)
\( b)\sqrt 3 \sin 2x + \sin \left( {\dfrac{\pi }{2} + 2x} \right) = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \sin \dfrac{\pi }{2}\cos 2x + \cos \dfrac{\pi }{2}\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + 1.\cos 2x + 0.\sin 2x = 1\\ \Leftrightarrow \sqrt 3 \sin 2x + \cos 2x - 1 = 0\\ \Leftrightarrow 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} + 1 - 2{\sin ^2}x - 1 = 0\\ \Leftrightarrow \sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - si{n^2}x = 0\\ \Leftrightarrow {\mathop{\rm sinx}\nolimits} \left( {\sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\mathop{\rm sinx}\nolimits} = 0\\ \sqrt 3 \cos x - {\mathop{\rm sinx}\nolimits} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \sin \left( {\dfrac{\pi }{3} - x} \right) = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ \dfrac{\pi }{3} - x = k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = k\pi \\ x = \dfrac{\pi }{3} - k\pi \end{array} \right. \)
Nhiều quá @@ Tách ra đi ><
\( d)3{\sin ^2}x + \sqrt 3 \sin 2x = 3\\ \Leftrightarrow 2{\sin ^2}x + 2\sqrt 3 {\mathop{\rm sinxcosx}\nolimits} - 3 = 0\\ *sinx = 0 \Rightarrow \text{không là nghiệm phương trình}\\ *sin \ne 0\\ 2 + 2\sqrt 3 \cot x - 3\left( {1 + {{\cot }^2}x} \right) = 0\\ \Leftrightarrow 3{\cot ^2}x - 2\sqrt 3 \cot x + 1 = 0\\ \Leftrightarrow \cot x = \dfrac{{\sqrt 3 }}{3} \Rightarrow x = \dfrac{\pi }{3} + k\pi \)