Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

TP

tìm giá trị lớn nhất M của hàm số\(y=a+b\sqrt{sinx}+c\sqrt{cosx};x\in\left(0;\frac{\pi}{4}\right);a^2+b^2+c^2=3\)

AH
22 tháng 10 2020 lúc 16:17

Bạn xem lại đề. Mình thấy $x\in (0; \frac{\pi}{4}]$ thì hợp lý hơn @_@

Bình luận (0)
NL
23 tháng 10 2020 lúc 15:18

Nếu miền giá trị của x có "chạm" vào \(\frac{\pi}{4}\) thì:

\(y^2=\left(a.1+b.\sqrt{sinx}+c.\sqrt{cosx}\right)^2\)

\(\Rightarrow y^2\le\left(a^2+b^2+c^2\right)\left(1+sinx+cosx\right)\)

\(\Rightarrow y^2\le3\left[1+\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right]\le3\left(1+\sqrt{2}\right)\)

\(\Rightarrow y\le\sqrt{3+3\sqrt{2}}\)

\(M=\sqrt{3+3\sqrt{2}}\) khi \(\left\{{}\begin{matrix}x=\frac{\pi}{4}\\b=c=\sqrt{\frac{6-3\sqrt{2}}{2}}\\a=\sqrt{3\sqrt{2}-3}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
23 tháng 10 2020 lúc 15:31

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(y^2=(a+b\sqrt{\sin x}+c\sqrt{\cos x})^2\leq (a^2+b^2+c^2)(1+\sin x+\cos x)=3(1+\sin x+\cos x)\)

$(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x=1+\sin 2x\leq 1+1=2$ với mọi $x\in (0;\frac{\pi}{4}]$

$\Rightarrow \sin x+\cos x\leq \sqrt{2}$

$\Rightarrow 1+\sin x+\cos x\leq \sqrt{2}+1$

Do đó: $y^2\leq 3(1+\sqrt{2})$

$\Rightarrow y\leq \sqrt{3+3\sqrt{2}}$

Vậy $M=\sqrt{3+3\sqrt{2}}$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HB
Xem chi tiết
LN
Xem chi tiết
HB
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
NP
Xem chi tiết
TN
Xem chi tiết
PT
Xem chi tiết